
Reducing Reliance on Relevance Judgments for System
Comparison by Using Expectation-Maximization

Ning Gao,1 William Webber2 and Douglas W. Oard1

1College of Information Studies/UMIACS, University of Maryland, College Park
{ninggao, oard}@umd.edu

2William Webber Consulting, william@williamwebber.com

Abstract. Relevance judgments are often the most expensive part of informa-
tion retrieval evaluation, and techniques for comparing retrieval systems using
fewer relevance judgments have received significant attention in recent years.
This paper proposes a novel system comparison method using an expectation-
maximization algorithm. In the expectation step, real-valued pseudo-judgments
are estimated from a set of system results. In the maximization step, new sys-
tem weights are learned from a combination of a limited number of actual human
judgments and system pseudo-judgments for the other documents. The method
can work without any human judgments, and is able to improve its accuracy by
incrementally adding human judgments. Experiments using TREC Ad Hoc col-
lections demonstrate strong correlations with system rankings using pooled hu-
man judgments, and comparison with existing baselines indicates that the new
method achieves the same comparison reliability with fewer human judgments.

1 Introduction

Information retrieval systems are generally evaluated on the relevance of the documents
they retrieve. Relevance judgments must be made by humans, and obtaining these judg-
ments can be the most expensive part of retrieval evaluation. The expense is greatest
when building a reusable test collection, since judgments are required not only for doc-
uments returned by a particular system or set of systems, but also for those that might
be returned by future systems on the same collection. The traditional method of man-
aging the judgment task for reusable collections is through pooling, where only the
top-ranked documents (such as the first 100 documents) from participating systems are
judged. Even pooling can lead to a heavy judgment burden, however, with depth 100
pooling on Text Retrieval Conference (TREC) Ad Hoc collections requiring thousands
of document judgments (133,681 for TREC 5, for example).

In this paper, we introduce a novel Expectation-Maximization (EM) algorithm for
comparing system effectiveness. The expectation step predicts the relevance of docu-
ments based on which systems return them; then the maximization step estimates sys-
tem effectiveness from the predicted relevance of the documents the system returns.
This process is repeated iteratively until the algorithm converges. A particular feature
of our method is that it can work with no human judgments at all, but can also incre-
mentally incorporate human judgments to improve accuracy.

We conduct experiments comparing our EM algorithm with existing state-of-the-
art methods for reduced-effort evaluation, both without and with human judgments, on
four TREC Ad Hoc collections. The task is to estimate a ranking of systems by retrieval
effectiveness. We find that our method generally outperforms existing judgment-free
methods. Our method improves still further as human relevance judgments are added,
outperforming existing limited-judgment methods for most judgment set sizes.

The remainder of the paper is laid out as follows. In Section 2, we survey re-
lated work on the reduced-effort evaluation of retrieval systems. Section 3 describes
our expectation-maximization method for retrieval system ranking, along with the var-
ious methods of calculating system votes for document relevance and, where human
judgments are available, of selecting documents for judgment. In Section 4, we evalu-
ate the different voting and document selection methods against each other, and against
established methods of judgment-free and limited-judgment system evaluation. Finally,
Section 5 presents our conclusions.

2 Related Work
The use of system pools to select documents for relevance judgment was first proposed
by Spärck-Jones and van Rijsbergen [13]. Zobel examined the reliability of pools in
early TREC Ad Hoc collections, finding that although they only captured half or fewer
of the relevant documents in the collection, the resulting judgment sets were not signif-
icantly biased against unpooled systems [17]. Cormack et al. proposed Move-To-Front
(MTF) pooling [6]. Under MTF, the documents from each system are judged in order
of rank, and the systems themselves are also prioritized according to the previously
judged documents. Various approaches have been proposed for evaluation with incom-
plete judgments. One is to use an evaluation metric that handles missing judgments.
Buckley and Voorhees introduced this idea with the BPref metric, which evaluates only
by judged documents [3].

A second approach to a limited judgment budget is to sample documents for judg-
ment, then statistically estimate the evaluation measure. Aslam et al. described Hedge,
a greedy algorithm for creating pools likely to contain large numbers of relevant docu-
ments [1]. Yilmaz and Aslam introduced a uniform random sample of the pooled docu-
ments and infer the pooled Average Precision (AP) metric to create infAP [14]. Aslam
et al. also proposed an unequal sampling method based upon AP weights [2]. A sim-
pler and more general stratified-sampling approach, xinfAP, is described in Yilmaz et al.
[16]. Carterette and Allan suggested that the documents to (incrementally) prioritize for
judgment are those which, if found relevant, would maximize the difference in scores
between evaluated systems [5]. Carterette’s Robust Test Collection (RTC) treats the
retrieval systems as experts, and their retrieval of documents as votes for relevance [4].

All the methods in this paper are item-based, estimating pseudo-judgments of rele-
vance for each document, and then evaluating the systems from these pseudo-judgments.
There are also distribution-based methods. In Dai et al., the distribution of scores over
documents is modeled by a mixture of two distributions, a Gaussian distribution for
relevant documents and an exponential distribution for non-relevant documents [7].

An alternative approach to system evaluation is to do without human relevance judg-
ments, ranking systems based solely on the system document rankings themselves. The

first to propose this approach was Soboroff et al., who used voting based on random
assignment of relevance to documents in the document pool [12]. Nuray and Can’s
Condorcet method used system document rankings to rank documents by predicted rel-
evance, and then assigned binary relevance to documents up to some cutoff [11]. Hauff
et al. compared all the above methods across 16 different test collections (from TREC
and elsewhere), finding Soboroff et al’s random-voting method best on nine collections,
and Nuray and Can’s Condorcet method best on six [8]. Hosseini et al. used the EM
framework to solve the problem of acquiring relevance judgements for Book Search
tasks through crowdsourcing when no true relevance labels are available [9].

3 System Comparison by EM

In this section, we introduce our method for performing system comparisons with lim-
ited or no human judgments. We begin with a description of our fully automatic EM
method, using no human judgments at all, in Section 3.1. We then describe how we
adapt the technique to make use of incomplete human judgments in Section 3.2.

3.1 Zero Relevance Judgments

To illustrate the operation of our EM algorithm, we start from the simplest case, which
is when no human judgments are available. In the expectation step (E-step), real-valued
pseudo-judgments are estimated using the document rankings produced by a diverse
range of systems. The loss between the result vector of a system and the pseudo-
judgment vector is then calculated for each system. In the maximization step (M-step),
the weights of systems are tuned to minimize the loss with respect to the pseudo-
judgments. The E-step and M-step alternate until the values converge to a fixed point.
The final real-valued pseudo-judgments of the documents are then taken as estimates of
document relevance, and used to evaluate retrieval systems, for instance by binarizing
relevance at a prediction threshold and then calculating an effectiveness metric.

The process can be more precisely explained with reference to the “learning matrix”
shown in Table 1. Suppose that there are p systems {S1, ...,Sp} to be compared using a
measure that averages over k topics {T1, ...,Tk}, and that for each topic Tm there are t(m)
documents {Dm,1, ...,Dm,t(m)} over whose relevance the effectiveness measure will be
computed. These documents could be the whole collection, but in our experiments they
are the judgment pool that was created for TREC. Because different topics have dif-
ferent judgment pools, we subscript the documents separately for each topic. Suppose
further that VS j ,Dm,n is the score that system S j assigns to document n for topic m. We
refer to this score as the retrieval status value of the respective document.

The EM algorithm iteratively estimates two sets of values: the hidden variables,
which are the pseudo-judgment scores for each document on each topic; and the pa-
rameters, which are the loss-minimizing weights for each system. For each document
Dm,n, a real-valued pseudo-judgment Jm,n reflects the EM algorithm’s current degree of
belief that document n is relevant to topic m. Similarly, the system weight w j represents
the algorithm’s present degree of belief that the results produced by system j are correct.
The better a system is at contributing to the estimation of accurate pseudo-judgments,

w1 ... wp
S1 ... Sp

D1,1 VS1,D1,1 VSp,D1,1 J1,1
T1

D1,t(1) VS1,D1,t(1) VSp,D1,t(1) J1,t(1)
...

Dk,1 VS1,Dk,1 VSp,Dk,1 Jk,1
Tk

Dk,t(k) VS1,Dk,t(k) VSp,Dk,t(k) Jk,t(k)

Table 1. EM Learning Matrix: S for systems, w for system weights, T for topics, D for documents,
J for pseudo-judgments, and V for predicted scores.

the higher its weight should be. We require that the p system weights be bounded to
[0,1] and that they always sum to 1, (||wi||1 = 1); thus they represent a distribution.

The iteration begins by setting the initial system weights w1 = {w1
1, ...,w

1
p} to the

uniform distribution, as 1/p, and then performing the first E-step. In the t-th E-step, sup-
pose we have system weights wt = {wt

1, ...,w
t
p}. We then compute the pseudo-judgment

Jm,n for each document Dm,n as:

Jt
m,n =

p

∑
j=1

wt
j · f (VS j ,Dm,n) . (1)

The score transformation function f (·) allows us to implement a range of estima-
tors for the E-stage by transforming the system’s retrieval status value VS j ,Dm,n prior to
performing the weighted linear combination across systems. In this paper, we try three
score transformation functions:

fScore(v) A scaled version of the system-produced document score, fScore(v) = v/vmax,
where vmax is the maximum score assigned by system S j to any document for topic
Tm. This scaling treats the retrieval status value as being measured on an interval
scale, while avoiding giving one system (or one topic) more emphasis than another
at the outset.

fBordaCount(v) The (single-ranking) Borda count of the score, computed as
fBordaCount(VS j ,Dm,n) = R j,m− r(Dm,n), where R j,m is the number of results that sys-
tem S j returns for topic Tm, and r(Dm,n) is the rank of document Dm,n when retrieval
status values VS j ,Dm,n are sorted decreasing, breaking ties arbitrarily.

fVote(v) A binarized version of the score, in which if the document Dm,n is in the top
1000 results returned by system S j, then VS j ,Dm,n is set to 1; otherwise, VS j ,Dm,n is
set to 0. The pseudo-judgment score for document Dm,n at iteration t is therefore
the wt -weighted average of the number of systems returning that document.

The t-th M-step is then initiated by computing the loss function L j for each system S j in
iteration t as the square of the Euclidean distance between the (scaled) vector of system
scores and the corresponding vector of pseudo-judgments from the t-th E-step:

Lt
j = ∑

m∈[1,k],n∈[1,t(m)]

(
wt

j ·VS j ,Dm,n − Jt
m,n
)2

. (2)

Lt
j will be small when a system’s results exhibit little (scaled) disagreement with the

pseudo-judgments; to the extent that the pseudo-judgments are reasonable estimates of
the actual judgments, Lt

j can be interpreted as an inverse estimate of the effectiveness of
system S j. We therefore update the system weights by first computing the inverse loss
It

j of system j, by inverting the sign of the loss and then applying an additive offset to
guarantee that the result is non-negative:

It
j = ∑

m,n, j
(wt

j ·VS j ,Dm,n)
2−∑

m,n

(
wt

j ·VS j ,Dm,n − Jt
m,n
)2

. (3)

We can regard the inverse loss as an improved estimate for the relative system weight;
so all that remains to get the actual system weight for the (t +1)-th step is to normalize
the values to sum to 1:

wt+1
j =

It
j

∑
p
j=1 It

j
. (4)

The iteration stops when the algorithm converges to a point where the weights and
pseudo-judgment scores no longer change.1 The final pseudo-judgment vector J can
then be used to estimate the relevance judgments. When binary relevance judgments are
required for computation of system effectiveness measures (as in our experiments), we
treat the λm documents with the highest pseudo-judgment values for topic m as relevant
and the others as not relevant. Because we use this value only for reporting results, it
has no effect on our EM iteration. In this paper, we set λm to the true number of relevant
documents in the NIST TREC judgment pools. In our experiments, we also give λm
to the baseline techniques against which we compare. We leave parameter estimation
for λm (or the design of parameter-free measures for system comparison directly from
pseudo-judgments) for future work.

3.2 Incomplete Relevance Judgments

The dependence of the M-step in our algorithm on the prior generation of informa-
tive pseudo-judgments in the immediately previous E-step suggests that we might be
able to improve our results by substituting some actual judgments for selected pseudo-
judgments. This leads naturally to two questions. If some incomplete set of actual judg-
ments were available, how should they be used? And if those actual judgments were to
be created on demand, which documents should be judged? In this section, we address
these two questions in turn.

Using Human Judgments Suppose that after the E-step in the t-th iteration (but before
the M-step) we obtain a human judgment for document Dm,n, denoted Hm,n ∈ {0,1}.
Then we can simply set Jt

m,n = Hm,n. Indeed, since once we learn Hm,n we expect that
there would be no value to forgetting it, we perform the same substitution after each
subsequent E-step. Moreover, because the human judgments represent ground truth, we

1 Convergence Proof: http://www.umiacs.umd.edu/˜ninggao/publications

http://www.umiacs.umd.edu/~ninggao/publications

can reasonably give them greater influence when we estimate system weights in the M-
step. We therefore modify the computation of the loss function to implement this idea,
replacing Equation (2) with:

Lt
j = ∑

m∈[1,k],n∈[1,t(m)]

Tm,n · (wt
j · f (VS j ,Dm,n)− Jt

m,n)
2 , (5)

where

Tm,n =

{
γ if human judgment
1 if pseudo-judgment .

(6)

Here Tm,n encodes the weight to place on the (human or pseudo) judgment for Dm,n.
When we have a human judgment Hm,n, we set Tm,n to γ (γ > 1). For this paper we have
arbitrarily set γ = 2, leaving the question of optimizing γ for future work. With this one
small change, our EM algorithm proceeds as before.

Requesting Human Judgments In general, we can request some number Nt
m of new

judgments for topic m after each E-step t (and before the subsequent M-step), selecting
those judgments using selection policy Pi, where a selection policy is a rule for selecting
previously unjudged documents for human judgment. In this paper we set Nm to be 1%
of the available TREC relevance judgments2 at each iteration, and we consider four
selection policies, consistently selecting using the same policy at each iteration. Note
that after 100 steps, all available judgments will be used, and thus we will produce
the same results as reported at TREC. We then compare policies based on which most
rapidly approach those TREC results. The four policies are:

P1 Select the Nm as-yet unjudged documents with highest pseudo-judgment scores Jm,n,
breaking ties arbitrarily.

P2 For each document Dm,n compute (across systems) the arithmetic mean Mm,n and
the standard deviation SDm,n for (f (VS1,Dm,n), ..., f (VSp,Dm,n)) and then select the as-
yet unjudged documents for which Mm,n +βSDm,n is largest. Here β is a tunable
parameter, arbitrarily set to 2 in our experiments.

P3 Randomly select Nm as-yet unjudged documents by simple random sampling.
P4 Select the documents which would maximize the weighted average system loss if

they were not relevant. This is the Hedge loss function defined by Aslam et al. [1].

In our experiments, we select documents to be judged only from the TREC judg-
ment pool, as we do not know the correct judgment for documents outside the pool. Both
P1 and P2 reflect the fact that the distinction between positive judgments and unknown
judgments is consequential for Mean Average Precision, our evaluation measure, while
the distinction between negative judgments and unknown judgments is inconsequential
for that measure. Our use of standard deviation in P2 reflects our intuition that a greater
diversity of system responses for the same document might be an indication of poorly
estimated pseudo-judgments, and also of documents likely to be discriminative between
systems.

2 The mean of Nm across all topics and test collections is 22.5 (min 11, max 46).

4 Experiments

We start with a description of our test collections and evaluation measures in Section
4.1. We then present zero-judgment results in Section 4.2, followed by incomplete-
judgment results for each judgment selection policy in Section 4.3.

4.1 Test Collections and Evaluation Measures

We use four TREC Ad Hoc test collections, from TREC 5, 6, 7 and 8. In each case, we
use all topics, and all the Ad Hoc runs officially submitted to NIST that searched the full
collection (known as Category A runs). For each test collection, the top 100 documents
returned by each system (for TREC 5), or for selected systems (for TREC 6 through 8),
form the pool for which human judgments, created by NIST, are available. For com-
parability with prior work, we focus on the degree to which system comparisons made
on the basis of numerical differences in Mean Average Precision (MAP) reflect those
which would have been made had the full TREC judgment pool been available. We use
trec eval version 9.0 to compute MAP truncated at 1,000 documents (MAP@1k) as the
measure of effectiveness, treating unjudged documents as not relevant, and binarizing
pseudo-judgments as described above.

Our first measure of reliability is Kendall’s τ [10] between the system ranking using
MAP@1k and the ranking produced by the method under analysis. When the purpose of
our evaluation is to measure relatively small improvements over already-good systems,
we would prefer to have a reliability metric that is more influenced by reversals among
the best systems than among relatively poor ones. Kendall’s τ weights both equally; the
τap [15] measure, however, places greater weight on more highly ranked systems. The
τap measure is asymmetric; we designate the full-pool TREC rankings as the objective
and our EM algorithm’s system ranking as the comparison.

4.2 Zero-Judgment Results

In this section, we present the reliability of our EM algorithm for system comparisons
without human judgments. Various voting and learning methods are employed. Vote,
Score, and BordaCount denote the results after the first E-step using fVote, fScore and
fBordaCount, respectively, while Vote.EM, Score.EM, and BordaCount.EM denote the
corresponding results after convergence. BordaCount is equivalent to the Borda count
method of Nuray and Can [11]. Additionally, we reimplement two other previously pub-
lished baselines for the zero-judgment task, the Condorcet method [11] and Soboroff’s
random-voting method [12].

Table 2 indicates the effect of EM, with (+) when EM numerically improves the
reliability measure τ or τap over the first E-step alone, and (-) to indicate a numerically
adverse affect. Over 24 such comparisons (two measures, three score transformation
functions, four test collections), 17 favored EM and the remaining 7 favored the first
E-step, a significant improvement under a paired Wilcoxon test at p < 0.05.

Taking TREC MAP@1k as ground truth scores, Figure 1 shows the difference be-
tween the estimated and ground truth MAP@1k score. Systems are ordered by TREC
MAP@1k on the X-axis with best systems on the left. For each system, the value on

τ τap
TREC 5 TREC 6 TREC 7 TREC 8 TREC 5 TREC 6 TREC 7 TREC 8

Score 0.469 0.551 0.473 0.471 0.337 0.289 0.227 0.156
Score.EM 0.479 (+) 0.563 (+) 0.496 (+) 0.490 (+) 0.326 (-) 0.314 (+) 0.257 (+) 0.169 (+)

BordaCount 0.464 0.537 0.471 0.462 0.322 0.276 0.229 0.147
BordaCount.EM 0.453(-) 0.555 (+) 0.487 (+) 0.461 (-) 0.321 (-) 0.294 (+) 0.237 (+) 0.146 (-)

Vote 0.468 0.537 0.473 0.459 0.336 0.291 0.227 0.143
Vote.EM 0.452 (-) 0.554 (+) 0.497 (+) 0.467 (+) 0.322 (-) 0.292 (+) 0.253 (+) 0.152 (+)

Condorcet 0.428 0.491 0.485 0.486 0.287 0.245 0.248 0.165
Soboroff 0.416 0.480 0.477 0.533 0.285 0.233 0.245 0.227

Table 2. Zero-judgment (highest value in bold), training and testing on all systems.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

● ●
●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●
● ● ● ● ●

0 20 40 60

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

TREC 6 systems(ordered by TREC MAP@1k score)

(E
st

im
at

ed
 −

 T
R

E
C

)
M

A
P

@
1k

● Score.EM
Condorcet
Soboroff

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●●●
●●

●●

0 20 40 60 80 100 120

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

TREC 8 systems(ordered by TREC MAP@1k score)

(E
st

im
at

ed
 −

 T
R

E
C

)
M

A
P

@
1k

● Score.EM
Condorcet
Soboroff

Fig. 1. Difference between the Estimated and TREC MAP@1k, Zero-judgment, Systems ordered
by TREC MAP, best systems on the left and worst systems on the right.

the Y-axis is calculated by (estimated MAP@1k - TREC MAP@1k). Perhaps the most
easily noted effect is that our Score.EM method and Condorcet tend to substantially
overestimate the value of MAP@1k, while Soboroff’s random-voting method tends to
substantially underestimate MAP@1k. However, because our focus is on system com-
parison, systematic tendencies towards overestimation or underestimation are not con-
sequential. The methods tend to give higher estimated MAP scores to the systems that
are in the middle range, but lower scores to the best and worst systems at the two
ends. This may be because the systems in the middle use similar searching strategies
and return similar results, while the best and worst systems may return results that are
not retrieved by other systems. The effect of majority voting causes underestimation
for systems that behave distinctively, and all the zero-judgment methods tend to make
similar errors.

4.3 Incomplete Judgment Results

Reliability of System Comparisons The difficulty that zero-judgment techniques ex-
hibit with even detecting, much less distinguishing between, the best systems, motivates

our interest in approaches that can use partial, but still incomplete, human judgments.
Figure 2 shows how τap grows as we add increasing numbers of human judgments.
We start from the Score.EM method, which was the best overall choice in the zero-
judgment case, and we consider four ways of selecting documents to be judged at each
step, policies P1, P2, P3 and P4 from Section 3.2. We compare to the following four
state-of-the-art baselines: xinfAP [16], BPref-10 [3], RTC [4] and Hedge [1].3

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

TREC 6

% of human judgments

TA
U

A
P

● xinfAP
BPref10
RTC
Hedge
P1
P4

●
●

●

●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●
●

●
●

● ● ● ●
●

●

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

TREC 8

% of human judgments

TA
U

A
P

● xinfAP
BPref10
RTC
Hedge
P1
P4

Fig. 2. τap by percent of pooled judgment used for different TREC Ad Hoc collections.

τ τap
TREC 5 TREC6 TREC 7 TREC 8 TREC 5 TREC 6 TREC 7 TREC 8

P1 21 14 21 16 31 19 31 25
P2 22 12 22 16 28 20 33 24
P3 78 72 75 79 89 80 84 86
P4 5 17 5 3 5 16 12 11
Hedge 5 17 3 2 13 19 21 4
RTC 16 80 2 26 29 ∗ 77 ∗
BPref ∗ 68 26 37 ∗ ∗ ∗ 78
xinfAP 23 21 18 19 26 27 32 29

Table 3. Human judgments (%) required to achieve τ = 0.9 or τap = 0.9 (∗means unachievable).

3 In our implementation of Hedge, the tunable parameter β is set constantly as 0.9; the results
are reported on MAP@1k; the unjudged documents are considered as not relevant; losses are
transformed linearly into the range of [0,1]; for each topic, there will be one document selected
to be judged in each iteration.

For our RTC results, we used the code package mtc-eval.tgz from the RTC devel-
opers.4 The computational complexity of our proposed EM-based method is O(CST n),
where S is the number of systems, T the number of topics, n the number of unique doc-
uments for a topic in the pool, and C the number of iterations before the convergence.
Empirically, C is smaller than 40. The time complexity of RTC is O(S2T n3). Running
MAP@1000 on TREC 5 would take more than two days on a four-core 3.10GHz PC.
Therefore, we only return RTC results for MAP@100.

As can be seen from Figure 2, Hedge and P4 achieve better τap with fewer human
judgments. On TREC 6, RTC briefly dominates other methods until more than 5% of
the judgments are available. Table 3 shows the percentage of human judgments needed
for the methods to achieve τ = 0.9 or τap = 0.9. As can be seen, on three of the four
collections P4 needs fewer human judgments than the other methods when measured by
τap. Hedge does best when measured by τ on three collections, suggesting that Hedge is
better at distinguishing between lower-ranked systems than between the highly ranked
systems that we care most about. BPref never achieves τ = 0.9 or τap = 0.9 for some
collections, even with full judgments.

Though weighting the documents in different ways, Hedge, RTC, and using policies
P1, P2, P4 with our EM method all tend to select for judgment documents that are highly
ranked by systems. The computational complexity of these three methods compares as
follows: RTC > Hedge > EM. With a limited budget for judging documents (e.g., a
few hundred), RTC will be the best choice. If more documents could be judged (e.g., a
few thousand), Hedge’s way of selecting documents should be considered. On the other
hand, P4’s performance on τap shows that the strongest choice overall is to use Hedge’s
loss functions with EM’s learning framework.

Effect of EM Learning Figure 3 shows the improvement on four collections of P1 with
human judgments, over a non-learning baseline, with available judgments increases
from 1% to 20%, measured by τap. In the non-learning baseline, the pseudo-judgments
of the as-yet unjudged documents are taken from the zero-judgment iteration of the EM
algorithm; the effect of additional human judgments is only to assign true relevance
judgments to documents for evaluation, not to train the learner. In other words, there is
no E-step or M-step in the non-learning baseline. The values shown are the differences
from this baseline of the τap of the full EM P1 method (Section 3.2), which refines its
pseudo-judgements with each iteration of new data.

A notable result is that learning with P1 actually hurts performance with 1% judg-
ments. The reasons for this are unclear. Possibly, a small number of human judgments
are insufficient to allow the the model to distinguish the better (often, “manual”) sys-
tems from the less effective (often “automatic”) systems. As more human judgments
are added, the P1 method seems to quickly overcome the spurious effect of this mistun-
ing. The improvements are substantial with 2% to 9% of the judgments, and decrease
progressively from 10% to 20%. In part, this is because there is less room for improve-
ment; as more documents are assessed, there are fewer for which pseudo-judgments
are required, and the effectiveness of the pseudo-judgment method therefore becomes
progressively less important.

4 http://ir.cis.udel.edu/˜carteret/downloads.html

http://ir.cis.udel.edu/~carteret/downloads.html

−
5

0
5

10
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

% of available judgments used

%
 im

pr
ov

em
en

t o
ve

r
no

n−
le

ar
ni

ng
 b

as
el

in
e

TREC 5
TREC 6
TREC 7
TREC 8

Fig. 3. % improvement by using EM learning, measured by τap, with human judgments from 1%
to 20%.

5 Conclusion

In this paper, we have introduced a novel method for automated or semi-automated
system evaluation, based on the expectation-maximization (EM) algorithm. Our EM
method predicts document relevance by system rankings, and system quality by the
predicted relevance of the documents they return, iterating till convergence.

For zero-judgment evaluation, we have compared our method with the Condorcet
method of Nuray and Can [11] and the random-voting method of Soboroff et al. [12].
Our methods beat the Condorcet method on all four of the test collections that we tried,
and beat Soboroff’s random-voting method on three of four. For incomplete judgments,
we find that with a limited judging budget, a few hundred documents for example,
RTC will be the better choice. However, the high computational complexity of RTC
may make it impractical for interactive use with large collections. If more documents
are judged, a few thousand for example, our results indicate that using EM’s learning
framework with Hedge’s loss function would be a good choice.

Acknowledgments This material is based in part on work supported by the National
Science Foundation under Grant No. 1065250 and by the Human Language Technology
Center of Excellence at Johns Hopkins University. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

[1] Aslam J, Pavlu V, and Savell R (2003). A unified model for metasearch and the ef-
ficient evaluation of retrieval systems via the hedge algorithm. In: Proc. 26st Annual
International ACM SIGIR, pp. 393–394.

[2] Aslam J, Pavlu V, Yilmaz E (2006) A statistical method for system evaluation using
incomplete judgments. In: Proc. 29th Annual International ACM SIGIR, pp 541–548

[3] Buckley C, Voorhees E (2004) Retrieval evaluation with incomplete information.
In: Proc. 27th Annual International ACM SIGIR, pp 25–32

[4] Carterette B (2007) Robust test collections for retrieval evaluation. In: Proc. 30th
Annual International ACM SIGIR, pp 55–62

[5] Carterette B, Allan J (2005) Incremental test collections. In: Proc. 14th ACM Inter-
national Conference on Information and Knowledge Management, pp 680–687

[6] Cormack GV, Palmer CR, and Clarke CL (1998). Efficient construction of large test
collections. In: Proc. 21st Annual International ACM SIGIR, pp. 282–289.

[7] Dai K, Pavlu V, Kanoulas E, Aslam JA (2012) Extended expectation maximization
for inferring score distributions. In: Proc. 34th European Conference on IR Research,
pp 293–304

[8] Hauff C, Hiemstra D, Azzopardi L, de Jong F (2010) A case for automatic system
evaluation. In: Proc. 31st European Conference on IR Research, pp 153–165

[9] Hosseini M, Cox IJ, Milic-Frayling N, Kazai G, and Vinay V (2012) On aggregat-
ing labels from multiple crowd workers to infer relevance of documents. In: Proc.
34th European Conference on IR Research, pp 182–194

[10] Kendall MG (1948) Rank Correlation Methods, 1st edn. Charles Griffin, London
[11] Nuray R, Can F (2006) Automatic ranking of information retrieval systems using

data fusion. In: Information Processing & Management 42(3), pp 595–614
[12] Soboroff I, Nicholas C, Cahan P (2001) Ranking retrieval systems without rele-

vance judgments. In: Proc. 24th Annual International ACM SIGIR, pp 66–73
[13] Spärck Jones K, van Rijsbergen CJ (1975) Report on the need for and provision

of an ‘ideal’ test collection. Tech. rep., University Computer Laboratory, Cambridge
[14] Yilmaz E, Aslam J (2006) Estimating average precision with incomplete and im-

perfect judgments. In: Proc. 15th ACM International Conference on Information and
Knowledge Management, pp 102–111

[15] Yilmaz E, Aslam J, Robertson S (2008) A new rank correlation coefficient for
information retrieval. In: Proc. 31st Annual International ACM SIGIR, pp 587–594

[16] Yilmaz E, Kanoulas E, Aslam JA (2008) A simple and efficient sampling method
for estimating ap and ndcg. In: Proc. 31st Annual International ACM SIGIR, pp.
603–610.

[17] Zobel J (1998) How reliable are the results of large-scale information retrieval
experiments? In: Proc. 21st Annual International ACM SIGIR, pp 307–314

	Reducing Reliance on Relevance Judgments for System Comparison by Using Expectation-Maximization

