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Instructor

◮ William Webber,
wew@umd.edu

◮ I finished my PhD in Computer
Science at the University of
Melbourne last year.

◮ I’m in the first year of my
postdoc at the UMD iSchool

◮ My research wordcloud is to
the left (last ten papers)

wew@umd.edu


Contact methods

◮ Google group:
groups.google.com/group/lbsc690-spring12-0101

◮ Official announcements via this group

◮ Course website:
www.umiacs.umd.edu/ ˜ wew/teaching/690/spring12/

◮ My email: wew@umd.edu

◮ My office: Hornbake 2123B

Consultations: 8:15pm to 9:15pm Tuesdays, directly after class.
NOTE: doors will be locked; please come up with me.
Consultations also by appointment.

groups.google.com/group/lbsc690-spring12-0101
www.umiacs.umd.edu/~wew/teaching/690/spring12/
wew@umd.edu


Textbooks

◮ Gentle, broad, verbose
introduction to computer
technology

◮ Expensive (≈ $100)
◮ Older edition is ok (but

check chapters)

◮ Concise introduction to
computers and
communication

◮ By a “famous name” in
the history of computing

◮ Cheap (≈ $15)

Readings will be provided from both books. Buying
one of them is recommended (but not compulsory).



Readings

◮ Background readings will be taken from one of the
textbooks

◮ Primary readings will be drawn from free online sources
◮ Please read material for a week’s class before coming to

class



Assessment

◮ There will be a midterm and an end-of-term exam, worth
35% combined.

◮ There will be a single term project, worth 40%. This is a
group project, to be done in groups of 3 (or 2 for rounding)

◮ Most weeks there will be homework, worth 15%.
◮ Participation (in classes and on the Google group) is worth

10%.



Excursus: enough about me; what about you?



The continuity of reality

◮ At a macro level, reality is continuous (though at a
quantum level, it is quantised)

◮ There is an indefinite divisibility in the dimensions of reality
(until we reach the quantum level):

◮ Length, width, and breadth
◮ Loudness of sound
◮ Brightness of light
◮ Tones of color
◮ Flow of time
◮ Physical location



Analogue representation

◮ When we come to represent reality (to copy it, store it,
replay it, manipulate it, reason about it), a natural
representation is likewise a continuous one.

◮ For instance, the soundwave of a performed music piece
can be represented by the grooves in an LP record:

◮ The louder the sound, the wider the groove oscillations
◮ The higher the pitch, the more frequent the oscillations
◮ Time tracks continually with the length of the groove

◮ The representation is a direct image or analogue of the
original, like a seal in wax; but inevitable imperfections
mean the representation departs from the original.

◮ The more times the representation is copied, the more the
imperfections accumulate. Think (if you remember them) of
copying from audio tape to audio tape.



Digital representation

◮ An alternative representation of reality is a discrete one:
convert the continuous magnitudes of reality into discrete
values in our representation.

◮ For instance, to represent a sound wave:
◮ Quantize time. Only measure the wave at fixed intervals.
◮ Quantize amplitude. Measure height (depth) of wave to a

fixed precision

◮ Each discrete value can be recorded as a whole or integral
number, written to a certain number of digits – hence, a
digital representation

◮ Concatenate all these digital values together, and our
representation (of a song, of a picture, of a video) is one
(very long) integral number.



Digitised objects as numbers

So, for instance, the 4th movement of Beethoven’s 9th
Symphony on my laptop (for a particular performance, encoded
in mp3) is, in part:

. . . 38056584543680340 . . .

whereas a photo of God creating Adam from the ceiling of the
Sistine Chapel is, in part:

. . . 26521209259038976 . . .

and the opening words of the Book of Genesis in the King
James Version is:

70676998972496260 . . .



Why digital?

◮ A digital representation is a simplification of reality; we
round off (sample and quantize).

◮ But once an object has been converted to a number, it can
be copied indefinitely with no loss of accuracy (provided
we can copy the number correctly!).

◮ The one representation (a number) can be used for all
forms of objects (sound, video, text) . . .

◮ can be stored on the same formats (DVDs, hard disks) . . .
◮ transferred on the same communication channels (fiber

networks, satellite) . . .
◮ and processed by the same object (a digital computer)



Excursus: expensive audio components

◮ This HDMI cable costs
$120 retail.

◮ Will performance differ
from a $5 HDMI cable?

◮ Is it worth it?

◮ This speaker cable costs
$80 retail.

◮ Will performance differ
from $5 speaker wire?

◮ Is it worth it?

Where does component quality matter in a digital hi-fi system?



Representing numbers as states

◮ A whole number takes on one of a discrete number of
values

◮ For instance, a single-digit decimal number takes on one of
10 values: 0, 1, 2, . . . , 9

◮ To represent this number physically, we need a physical
object that is able to take on that many states.

◮ For instance, a six-sided dice can be in one of six states



Up/down, on/off

◮ The easiest (useful) number of states to represent is 2, for
the values 0, 1.

◮ Why is a representation holding a single state not useful?
◮ For instance:

◮ a high voltage can be 1, a low voltage 0
◮ an electrical switch being on can be 1, being closed 0
◮ presence of a magnetic field on a tape can be 1, absence 0
◮ a pit on an aluminium-covered surface (e.g. on a DVD) can

be 1, the absence can be 0.

◮ This gives us the binary encoding system



Binary numbers

◮ To represent a number greater than 9 in the decimal
system, we add (decimal) digits.

◮ Similarly, to represent a number greater than 1 in the
binary system, we add (binary) digits or bits.

◮ In a b-base system, digit x in place n has value x ∗ n(b−1):

Decimal: 235
Place-value 100 10 1
Digit 2 3 5
Value 200 + 30 + 5 = 235

Binary: 11101011
Place-value 128 64 32 16 8 4 2 1
Digit 1 1 1 0 1 0 1 1
Value 128 + 64 + 32 + 0 + 8 + 0 + 2 + 1 = 235



Excursus: conversions and counting

From binary to decimal:

10
101
01011
100001

From decimal to binary:

3
10
33
63

◮ What number can you count up to on your fingers, in
binary?

◮ The Chinese have a method for counting up to ten using
the five fingers on one hand. Assuming fingers have only
two states (up, down), is five the minimum number of
fingers you need to count up to ten?

◮ If you also used your toes, what number could you count
up to in binary?



Binary thoughts

◮ Not only are data (images, sound, text, numbers)
represented as binary numbers in a digital computer.

◮ Also, the instructions to the computer (the computer
program) is represented as a sequence of binary numbers.

◮ For instance, this binary number:

00000000001000100011000000100000

tells a MIPS processor (as might be found in a digital TV)
to add numbers found in two registers (high-speed
memory locations) and store the results in a third.



Logic gates

A NOR B ⇔ ¬(A ∨ B)

INPUT OUTPUT

A B A NOR B

0 0 1
0 1 0
1 0 0
1 1 0

◮ Logical relations implemented in simple (transistor) circuits.
◮ Combined to perform more complex (math) operations.
◮ The above circuit, repeated often enough, is sufficient to

implement the arithmetic-logical unit of digital computer.



Excursus: transferable intelligence

◮ A program’s data (“memory”) and its code (“reason”) can
be represented as a bitstream (or, if you prefer, a number)

◮ This representation (collection of bits) is independent of,
transferable between, different physical implementations
(collection of atoms).

◮ What implications does this have for understanding, future
of, human consciousness?

◮ Is our cranial wetware reducible to software running on
hardware?



Bits, bytes, words

10100010 01100010 00010010 000000001

◮ A binary digit is called a bit
◮ Bits are organized into groups called bytes

◮ Now, a byte always has 8 bits, but historically this varied

◮ Bytes in turn are organized into words of 2, 4, or 8 bytes



Word size

◮ The word size of an architecture is the “standard”
processing unit

◮ Architectures are identified by their word size, e.g. 32 bit,
64 bit

◮ Size of word crucially determines maximum memory size
of architecture

Technical details
◮ The processor accesses data in memory by using the

address of that data.
◮ Each byte in memory has its own address.
◮ An address is simply a number, held in a machine word.



Excursus: memory space

◮ How much memory can a 16-bit machine hold?
◮ How much memory can a 32-bit machine hold?
◮ How much memory can a 64-bit machine hold?



Larger memory, storage sizes

Size

Prefix Abbrev Old New

Kilo- KB 210 thousand
Mega- MB 220 million
Giga- GB 230 billion
Tera- TB 240 trillion
Peta- PB 250 quadrillion

◮ Larger memory sizes traditionally organized into powers of
2 that are multiples of 10

◮ 210n
≈ 103n

◮ Modern usage is in powers of ten
◮ A hard-disk manufacturer actually got sued over this issue!



Transfer speeds

◮ Network transfer speeds have the same prefixes, but are in
bits, not bytes, per second.

◮ E.g. 128 Kbps is 128,000 bits per second
◮ Divide by 8 to get bytes per second (which is what you

want)
◮ E.g. 128 Kbps is 16,000 bytes or 16 KB per second

Technology Transfer speed

Modem 300 bps to 56 Kbps
(A)DSL 1.5 Mbps to 24Mbps down, 0.5 Mbps to 3.5 Mbps up
Cable 1 Mbps to 30 Mbps down, 128 Kbps to 768 Kbps up
Fibre to the X 100Mbps to 1 Gbps and beyond

Figure: Transfer speeds of different network technologies.



Excursus: what does “network speed” mean

◮ How fast does a bit of information travel?
◮ How long does it take a bit to travel the 20,000 km from

one side of the earth to the other?
◮ What really determines network speed?
◮ Why is the term “bandwidth” used in relation to speed?



CPU speed

◮ Work of CPU driven by “system clock”; each “tick” signals
an operation

◮ CPU speed is measured in terms of clock cycles (ticks) per
second, or hertz (hz).

◮ For instance, my laptop has 2 processors running at
2.4GHz.

◮ How many ticks per second is that?

◮ Raw clock speed increasingly unreliable as measure of
effective system performance.



Moore’s law

◮ Number of transistors in integrated circuit (IC) doubles
approximately every two years (or every 18 months)

◮ Names after Gordon Moore, later Intel founder, who
proposed the regularity in 1965

◮ Num. transistors approximates processing capacity of IC.
◮ Transistors “spent” on different things (CPUs, cache)

◮ modern chips have many CPUs per chip, not higher clock
speeds for single chip

◮ Various physical limitations (e.g. size of an atom, amount
of heat generated) are approaching.



The memory mountain

Memory type Size Time to
access

2 Ghz cy-
cles waiting

Processor register 256 B 0.5 ns 1
L1 cache 64 KB 2ns 4
L2 cache 3 MB 10ns 20
Main memory 4 GB 100ns 200
Local hard disk 2 TB 10ms 20 million
Internet server 1 PB 100ms 200 million

◮ Processor speeds increasing quickly
◮ Memory size increasing quickly
◮ . . . but memory access speed increasing only slowly



Excursus: waiting for your memory

◮ What is the hertz of your cardiovascular system?
◮ If your memory wait times were proportional in hertz to a

modern CPU’s, then:
◮ How long would you wait to retrieve a memory from L2

cache (≈ something you thought about recently)?
◮ How long would you wait to retrieve a memory from your

main memory (≈ something you haven’t thought about for a
while)?

◮ How long would you wait to retrieve a memory from local
hard disk (≈ something you had to look up in a book)?
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