
LBSC 690: Information Technology
Lecture 05

Structured data and databases

William Webber
CIS, University of Maryland

Spring semester, 2012

Interpreting bits

010011010110

13.5801
−268

3rd Feb, 2014

pushl %ead, $1

"my"

◮ At heart, all data is stored as a string (or strings) of bits.
◮ But interpretation of those bits depends upon type of data.
◮ The one and the same bit string means different things

when interpreted as a different type.

Integral data types

Unsigned integer Interpret bit string as fixed-width binary
number

Signed integer First bit gives sign (positive or negative). For
negative numbers, remaining bits count down from
largest negative value.

Both have various fixed-width bit sizes (8 bits, 16 bits, etc.)

Floating point data types

Sign Exponent Significand
1 10000011 01001000000000000000000

−(24) ∗ 0.128125 = −2.05 (1)

◮ Used to represent values with (binary) decimal places
(also very large values with limited precision).

◮ The (binary) decimal point “floats” to different locations.
◮ Bit string has three parts:

◮ Significand, gives the placeless, signless value
◮ Exponent, specifies what place the (binary) decimal point is
◮ Sign bit, says whether value is positive or negative

Character data types

01100011→ 143 →
′c′ (2)

◮ A character is, roughly, a letter from an alphabet or script.
◮ Each numerical value mapped to a different character.
◮ Mapping from number to character (and back) called a

character set or charset.
◮ (A sequence of characters sometimes called a (character)

string)

Excursus: designing a character set for English

◮ How many distinct values are there in the English
(lower-case) alphabet?

◮ How many bits to represent these many distinct values?
◮ How many if we add in upper case? Numerical digits?

Punctuation?

ASCII

ASCII Code Chart

◮ ASCII (1963) standardized English character set
◮ Uses 7 bits (leaves 8th bit of byte unused)
◮ Covers:

◮ letters (upper and lower)
◮ numerical digits
◮ common punctuation and symbols
◮ whitespace (space, tab, newline)
◮ “system” values (delete; backspace; ring a bell)

Extending ASCII

Figure: windows-1252
charset

◮ ASCII does not cover even all
Western European languages (no õ,
no ä, no ß, etc.)

◮ Various extensions use the eight bit,
such as windows-1252

◮ These can turn up even under
English to give (e.g.) directional
quotes (“, ”, rather than "), em- and
en-dashes (–, —, rather than --,
---)

◮ Such characters will not display on
all systems! (and may stuff up your
HTML code!)

A mess of character sets

◮ Different extensions to ASCII not compatible (Windows,
DOS, and MacOS used to have quite different eighth-bit
Latin character sets).

◮ Non-Latin alphabets needed their own characters sets.
◮ Chinese, Japanese character sets too large to represent in

8 bits
◮ No simple, standard way of representing different

alphabets on the one page (e.g. a Greek–Tamil lexicon)

A general, standard solution: Unicode
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 130A

b

c

d

e

r

s

t

u

�

�

�

�

�

�

�

�

¢

£

¤

¥

²

³

´

µ

Â

Ã

Ä

Å

Ò

Ó

Ô

Õ

â

ã

ä

å

ò

ó

ô

õ

�

�

�

�

�
13000

13001

13002

13010

13011

13012

13020

13021

13022

13030

13031

13032

13040

13041

13042

13050

13051

13052

13060

13061

13062

13070

13071

13072

13080

13081

13082

13090

13091

13092

130A0

130A1

130A2

0

1

2

3
◮ Unicode provides one character set for all human

languages, plus many symbol vocabularies.
◮ Base unicode set (“Plane 0”) provides character sets for

“living” scripts, up to 216 values (i.e. representable in 16
bits)

◮ Additional “planes” provide support for historical scripts
(cuneiform, hieroglyphics), archaic forms of living scripts
(ancient forms of Chinese characters)

Unicode: encodings, fonts

◮ Unicode specifies character set (mapping from numbers to
characters), but not encoding (way of representing
numbers).

◮ Three common encodings:
◮ UTF-8. Single-byte for ASCII, additional bytes for

trans-ASCII. Backwards compatible with ASCII for
ASCII-only text.

◮ UTF-16. Two-byte (16 bit) basic characters, extended to
four bytes (32 bits) for additional planes.

◮ UTF-32. Fixed-width, 32 bits for every character

◮ Just because a system recognizes the Unicode character
set, doesn’t mean it has a font capable of displaying all the
characters in it!

Other data types

Besides numerical, character data types, various others
possible:

◮ Date (time, date and time, timestamp)
◮ Boolean (true, false)
◮ Address in computer memory
◮ Machine code instruction

Compound data types can be made up from these “atomic”
types (e.g. a set; an ordered list; a user; a street address).

Managing data and databases

Jane Doe is a student of LBSC 690, “Information
Technology”. Her date of birth is 1st January, 1980.
Her student id is 1234-5678. Her mark is 87. The
lecturer for LBSC 690 subject is William Webber.

◮ Humans can process information about people expressed
in natural language.

◮ Computers can’t increasingly can, but not fluently.

Structured data
Property Value

Given name Jane
Family name Doe
Date of birth 1980-01-01
Student id 1234-5678
Subject code LBSC 690
Subject name Information Technology
Mark 87
Instructor William Webber

◮ To (readily) manipulate data via a program, we need to
extract its structure.

◮ Simple structure is as list of “property : value” pairs.
◮ We’ve seen this sort of structure with CSS.

◮ Subject of the properties is an entity.
◮ Not all data is structural and structure depends on

application.

Data tables

Given Family Date of Student Subject Subject
name name birth id code name Mark Instructor
Jane Doe 1980-01-01 1234-5678 LBSC 690 Information Tech-

nology
87 William Webber

John Dee 1985-06-21 2233-4455 LBSC 690 Information Tech-
nology

75 William Webber

Jane Doe 1980-01-01 1234-5678 LBSC 771 Records Manage-
ment

76 Adam Adamson

John Dee 1985-06-21 2233-4455 LBSC 601 Basket Weaving 52 William Webber

◮ Where structure is common to many entities, can be
organized as a table.

◮ Each row of table corresponds to an entity or record.
◮ Each column corresponds to a property or field.
◮ Each cell gives the entity’s value for that field.

◮ These (spreadsheet-like) tables are at the heart of
databases.

Schema

Property Type

Given name Character
Family name Character
Date of birth Date
Student id Character
Subject code Character
Subject name Character
Mark Integer
Instructor Character

◮ The properties of a table are called the (data) schema
◮ The schema defines the names of the properties
◮ . . . and also their types
◮ (and possibly also other constraints: length; can they be

empty; etc.)

Indexes
Field Type Properties

Given name Character
Family name Character Indexed
Date of birth Date
Student id Character Indexed
Subject code Character
Subject name Character
Mark Integer
Instructor Character

◮ As well as storing records, we need to be able to look them
up.

◮ For a large database with millions of records, searching
through them one by one is too slow.

◮ Instead, we build an index on fields that are likely to be
frequently searched (e.g. id number, name).

◮ Indexed fields are called keys

Speeding up lookup

How to look a thing up faster than going through one by one?

Consider looking up a phonebook (remember them?) for a
family name.

1. Open to a page somewhere in the middle.
2. If name you want is there:

2.1 STOP

3. Else, if name you want is before current page:
3.1 Remember current page as new end of book.
3.2 Open somewhere in middle of first half.

4. Else:
4.1 Remember current page as new start of book.
4.2 Open somewhere in middle of second half.

5. Go to Step 2

Congratulations – your first (possibly) algorithm!

Binary search

◮ Computer equivalent of telephone lookup is binary search.
◮ Always splits list strictly in half (lacks “feel”).
◮ Simple index:

◮ order index fields (alphabetically, numerically, by date)
◮ for each indexed field, keep location of record in table (e.g.

row number)
◮ perform binary search

Excursus: algorithmic complexity

If we have a table with 1,000 records, and we are looking up a
random record, how many records do we need to look at on
average to find the desired record:

◮ looking at them one at a time (linear search)?
◮ with an ordered index and performing a binary search?

Primary key

Field Type Properties

Id Integer Primary Key
Given name Character
Family name Character Indexed
Date of birth Date
Student id Character Indexed
Subject code Character
Subject name Character
Mark Integer
Instructor Character

◮ We also want a canonical way of referring to record.
◮ This indexed field is known as the primary key.
◮ Primary key must (essentially) never change . . .
◮ . . . so best to make it a field that has no application

meaning (e.g. an arbitrary integer, as here)

Compound entities

Field Type Properties

Id Integer Primary Key
Given name Character
Family name Character Indexed
Date of birth Date
Student id Character Indexed
Subject code Character
Subject name Character
Mark Integer
Instructor Character

◮ So far, only considered single table
◮ But in above schema, some fields relate to subject, rather

than student

Repeated information

Given Family Date of Student Subject Subject
name name birth id code name Mark Instructor
Jane Doe 1980-01-01 1234-5678 LBSC 690 Information Tech-

nology
87 William Webber

John Dee 1985-06-21 2233-4455 LBSC 690 Information Tech-
nology

75 William Webber

Jane Doe 1980-01-01 1234-5678 LBSC 771 Records Manage-
ment

76 Adam Adamson

John Dee 1985-06-21 2233-4455 LBSC 601 Basket Weaving 52 William Webber

◮ Many students will be in the same subject
◮ . . . don’t want to repeat this information
◮ Especially since it may change

Foreign keys

Field Type Properties

Id Integer Primary Key
Given name Character
Family name Character Indexed
Date of birth Date
Student id Character Indexed
Mark Integer
Subject id Integer Foreign Key → Sub-

ject(Id)

Table: Student

Field Type Properties

Id Integer Primary Key
Code Character
Name Character
Instructor Character

Table: Subject

◮ Separate into two tables or entities
◮ The relationship between the two entities is captured using

a foreign key
◮ One finds the subject record for a student by looking up the

subject whose “Id” equals the student’s “Subject id”

Splitting into two tables

Student
Given Family Date of Student Subject Subject

Id name name birth id code name Mark Instructor
1 Jane Doe 1980-01-01 1234-5678 LBSC 690 Info. Tech. 87 W. Webber
2 John Dee 1985-06-21 2233-4455 LBSC 690 Info. Tech. 75 W. Webber
3 Jane Doe 1980-01-01 1234-5678 LBSC 771 Record Mgmnt 76 A. Adamson
4 John Dee 1985-06-21 2233-4455 LBSC 601 Bskt Weaving 52 W. Webber

Figure: Before

Student
Given Family Date of Student Subject

Id name name birth id Mark id
1 Jane Doe 1980-01-01 1234-5678 87 1
2 John Dee 1985-06-21 2233-4455 75 1
3 Jane Doe 1980-01-01 1234-5678 76 2
4 John Dee 1985-06-21 2233-4455 52 3

Subject
Id Code Name Instructor
1 LBSC 690 Info. Tech. W. Webber
2 LBSC 771 Record Mgmnt A. Adamson
3 LBSC 601 Bskt Weaving W. Webber

Figure: After

Entity-relation diagrams

◮ Diagram relationship between entities during design phase.
◮ Several standards; we’re looking at a simple one.
◮ Each entity represented by box, with (optionally) attributes

of entity listed in box.

Relationships in ERDs

◮ Relationships in ERDs shown by arrow
◮ Arrow points from entity that has reference (here, from the

foreign key attribute), to entity that is referenced
◮ Cardinality of membership shown at connection to entity,

generally either 1 or n (for “many”).
◮ Here, we are asserting that a student can have (be enrolled

in) only one subject, but a subject can be had by (enrol)
many students (a one-to-many relationship).

Further decomposition

◮ Previous slide we said “a student can be enrolled in only
one subject”; however, this is clearly wrong.

◮ The correct statement is:

Definition (Student-subject relationship)
A student can be enrolled in many subjects; a subject can have
many students enrolled in it.

◮ This is a many-to-many-relationship.

Many-to-many relationships

◮ In practice, relational databases have a fixed number of
fields.

◮ Cannot have variable number of foreign keys in one entity
referencing another entity.

◮ Instead, for many-many relationships, need a separate
entity (table) recording relation.

◮ This separate entity also holds ancillary data that is
common in such relations (here, “mark”).

Further decompositions

◮ Instructor should be separated out
◮ Further possible:

◮ Separate staff from instructor
◮ Make common “person” table, as parent to staff and student

◮ General principle: don’t repeat information!

XML for structured data

<s tudent>
<name given= ” Jane ” fam i l y = ”Doe ” />
<date−of−b i r t h>

<date year= ” 1980 ” month= ” 01 ” , day= ” 01 ” />
</ date−of−b i r t h>
<student−i d>1234−5678</ s tudent−i d>
<sub jec ts>

<sub j ec t>
<code>LBSC 690< / code>
< !−− . . . −−>

</ sub j ec t>
<sub j ec t>

<code>LBSC 701< / code>
< !−− . . . −−>

</ sub j ec t>
</ sub jec ts>

< / s tudent>

◮ An alternative representation for structured data is XML.
◮ XML creates tree of nested elements.
◮ Allows enforcement of schema by external schema.

XML: advantages

<s tudent>
<name given= ” Jane ” fam i l y = ”Doe ” />
<date−of−b i r t h>

<date year= ” 1980 ” month= ” 01 ” , day= ” 01 ” />
</ date−of−b i r t h>
<student−i d>1234−5678</ s tudent−i d>
<sub jec ts>

<sub j ec t>
<code>LBSC 690< / code>
< !−− . . . −−>

</ sub j ec t>
<sub j ec t>

<code>LBSC 701< / code>
< !−− . . . −−>

</ sub j ec t>
</ sub jec ts>

< / s tudent>

◮ Nesting of included elements (see <subjects> above)
◮ Self-documentation
◮ Human-editable

XML: disadvantages

<s tudent>
<name given= ” Jane ” fam i l y = ”Doe ” />
<date−of−b i r t h>

<date year= ” 1980 ” month= ” 01 ” , day= ” 01 ” />
</ date−of−b i r t h>
<student−i d>1234−5678</ s tudent−i d>
<sub jec ts>

<sub j ec t>
<code>LBSC 690< / code>
< !−− . . . −−>

</ sub j ec t>
<sub j ec t>

<code>LBSC 701< / code>
< !−− . . . −−>

</ sub j ec t>
</ sub jec ts>

< / s tudent>

◮ Shared elements (e.g. shared subjects) must be reference
using href-like mechanism

◮ Verbose (tags repeated for every entity)

XML in practice

◮ XML mostly used in database world as a data exchange
format.

◮ But there is ongoing work on native XML databases.

Looking ahead

◮ In this lecture, described relational databases conceptually,
presented a graphical model for designing them (ERD).

◮ Next week, will examine language for defining,
manipulating databases (SQL) . . .

◮ and will look at using an SQL-based relational database
management system (RDBMS) to construct and manage a
database.

	Data types
	Structured data and tables
	Relational data
	XML

