
Lecture 3: Information Retrieval

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 3

What we’ll learn today

I How to take a user query and return a ranked list of results

I How implement this operation in a reasonably efficient way

I How to automatically expand the query by adding synonyms
and related words

Reviewing: document similarity in VSM

I Document is BOW

I Project into term space as vector, with dimension lengths
given by TF*IDF

I Calculate document similarity as cosine of angle between their
vectors

I Implement as dot product on unit-length vectors

Same process can be used to rank documents by decreasing
similarity to given document.

Query processing in VSM

I Treat the query as a (short) (pseudo-)document

I Calculate (VSM cosine) similarity between query
pseudo-document and each document in collection

I Rank documents by decreasing similarity with query

I Return to user in rank order (generally only top results
initially)

Index

I In last week’s worksheet, every time we ran a similarity
computation, we recalculated unit-length TF*IDF vectors for
all documents.

I Since these do not change from query to query, save
processing by precalculating and store results in an index.

I But we still need to iterate through all documents to rank by
similarity.

I This an O(|D|) operation.

Term-wise processing

I In document similarity, only terms occurring in both
documents contribute to cosine score (remember the
dot-product!)

I In query processing by pseudo-document model, therefore,
only documents that contain query terms need to be
considered (which makes intuitive sense)

I Complexity reduced to O(max dft)
I Note: because Zipfian distribution, most frequent term

dominates.
I Very good reason to drop stop-words!

I Need an index that supports quickly finding which documents
a term occurs in

Inverted index

Index designed to support query processing:

I Keys are terms

I Values are lists of 〈d ,wt,d〉 pairs

I Each 〈d ,wtd 〉 pair called a posting

I List of these called a postings list

Term Postings list

tea → 1:1.4 ; 3:1.0 ; 6:1.7 ; . . .
two → 2:2.3 ; 3:1.0 ; 4:1.7 ; . . .
me → 1:1.0 ; 2:1.4 ; . . .

Query processing on inverted index

I For each term t in query:
I Load postings list for t
I For each posting 〈d ,wtd 〉 in list:

I ad += wtd
1

I Sort documents by decreasing ad
I Return sorted results to user

NOTE: there are a lot of efficiency optimizations that we won’t go
into here!

1ad is called an “accumulator”

Tweaking the formula

I Previous algorithm does not precisely calculate cosine distance
between pseudo-document and documents, as:

I IDF
I log(1 + fq,t)
I Unit-length normalization

not applied

I Unit-length normalization doesn’t matter to query processing
(why not?), but other can

I In fact, many of formula component choices made here (e.g.
TF = log(fd ,t + 1) vs. TF = fd ,t) are heuristic (as is the VSM
model itself)

I Zobel and Moffat, “Exploring the Similarity Space” (1998)
identify (8× 9× 2× 6× 14) = 12096 possible different
combinations of choices

I Once can try different variants to improve effectiveness

I (We’ll talk next lecture about how to test success)

Alternative document length normalization

I To date, normalized document vectors to unit length
I But is this correct?

I Very short documents will get high scores for term occurrences
I Long documents may cover many topics, satisfy many queries

Empirical adjustment

Assume that we have:

I Large number of queries

I Judgments of which documents are relevant to which queries

Then we can compare:

I Probability of document being retrieved given length

I Probability of document being relevant given length

and adjust if these two probabilities are out of line

Probability retrieved v. relevant given length

I Look at mean
empirical relation

I Simplify and identify
“pivot”. Lengths
greater than pivot
point should be
boosted; less,
decreased

I Linearly approximate
to “slope”

Amit Singhal, Chris Buckley, and Mandar Mitra, “Pivoted Document Length

Normalization”, SIGIR 1996

Probability retrieved v. relevant given length

I Look at mean
empirical relation

I Simplify and identify
“pivot”. Lengths
greater than pivot
point should be
boosted; less,
decreased

I Linearly approximate
to “slope”

Amit Singhal, Chris Buckley, and Mandar Mitra, “Pivoted Document Length

Normalization”, SIGIR 1996

Probability retrieved v. relevant given length

I Look at mean
empirical relation

I Simplify and identify
“pivot”. Lengths
greater than pivot
point should be
boosted; less,
decreased

I Linearly approximate
to “slope”

Amit Singhal, Chris Buckley, and Mandar Mitra, “Pivoted Document Length

Normalization”, SIGIR 1996

Pivoted document length normalization

w weight of term in document (e.g. TF*IDF)

nu original normalization (e.g. unit-length normalization
by length of document vector)

p pivot point for pivot normalization

s slope of pivot normalization

wp pivot-normalized weight of term

wp =
w

(1.0− s) · p + s · nu
(1)

I Various approximations and factors (see Singhal et al.)

I Note that we are no longer calculating cosine distance, but
pseudo-cosine distance!

I Require dataset to tune on, and will be tuned to that dataset

I Gives significant improvement in effectiveness

Looking back and forward

Back

I Queries can be processing in VSM by
treating query as (pseudo-)document

I Inverted index supports efficient query
processing

I Various tweaks to VSM formulae
possible, of which pivoted document
length normalization empirically the
most effective

Looking back and forward

Forward

I Queries short, possible ambiguous; can
be expanded by finding similar terms
(next lecture)

I In following lecture, will look at
evaluation of IR methods, for selecting
methods and tuning parameters

I Later, we will look at probabilistic
methods, that present themselves as
more theoretically grounded, requiring
fewer heuristic “hacks”

Further reading

I Chapter 2, “The term vocabulary and postings lists”2, from Section
2 onwards, of Manning, Raghavan, and Schutze, Introduction to
Information Retrieval (more advanced methods for postings lists)

I Justin Zobel and Alistair Moffat, “Inverted files for text search
engines”3, ACM Computing Surveys, 2006 (authoritative survey
paper on inverted indexes by pioneers in their optimization, who
happen to be UniMelb professors)

I Singhal, Buckley, and Mitra, “Pivoted document length
normalization”4, SIGIR, 1996 (introduced pivoted DLN; first author
is now head of search engineering at Google)

2http://nlp.stanford.edu/IR-book/pdf/02voc.pdf
3http://www.cs.mu.oz.au/~jz/fulltext/compsurv06.pdf
4http://singhal.info/pivoted-dln.pdf

http://nlp.stanford.edu/IR-book/pdf/02voc.pdf
http://www.cs.mu.oz.au/~jz/fulltext/compsurv06.pdf
http://singhal.info/pivoted-dln.pdf

	IR in VSM: the query pseudo-doc
	Document and query similarity
	Implementing VSM query processing

	Improving effectiveness
	Summary

