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What we’ll learn in this lecture

I A tutorial on matrix algebra

I A simple matrix transformation (Principal Component
Analysis) which aligns data with most “important” correlated
dimensions

I A related matrix decomposition called Singular Value
Decomposition (SVD)

I How to interpret SVD when performed on a TDM

I An initial look at Latent Semantic Analysis (LSA) which uses
reduced-rank SVD to find “concepts” in a document corpus



Matrix concepts

I X is a matrix with m rows {r1, r2, . . . , rm} and n columns
{c1, c2, . . . , cn} (Xm×n for short)

I Applied to TDM, rows are terms, columns are docs (NB)

I xij is the element in row i , column j of X
I In TDM, this is a (possibly 0) term posting

I (Xn×m)T is the transpose of Xmn, where xTij = xji
I In TDM, transposing is analogous to view points as terms in

document space, rather than documents in term space

I A square matrix has the same number of rows as columns
(m = n)

I A diagonal matrix is one which has non-zero values only on
the diagonal (i.e., xij = 0 if i 6= j).



Matrix multiplication and geometry

I If X is m × n and Y is n × p, then Z = XY is m × p (matrix
multiplication)

I Matrix multiplication is associative:

A(BC) = (AB)C (1)

I If X is m × d , and Y is square d × d , then:
I X can be interpreted as locating m items in d-dimensional

space
I Y can be interpreted as some (combined) geometrical

transformation (rotate, shear, scale, translate)

I In particular, if Y is a diagonal vector, it can be interpreted as
a scale (dimensions scaled, but remain independent)



More matrix concepts

I The identity matrix I is a square matrix with 1 in the
diagonals, 0 elsewhere

I M·×n · In×n = M

I M−1 is the inverse of M if MM−1 = I

I For a diagonal matrix d, d−1 has the diagonal values
d−1
i ,i = 1/di ,i (and 0 elsewhere)



Rank and orthogonality
I A set of vectors V = {v1, v2, ·, vn} is linearly independent if no

vector vi can be expressed as a weighted combination of the
other vectors v1, · · · , vi−1, vi+1, vn.

I An m× n matrix M has rank r (r ≤ min(m, n)) if r is the size
of the largest set of linearly independent row (or column)
vectors of M

I Two vectors v, w, of same length n, are orthogonal (“at right
angles”) if v ·w = 0.

I v and w are orthonormal if in addition they are unit vectors.
I If we have a set V of n orthonormal vectors {v1, v2, · · · , vn},

and each vector is also of length n, then V is an orthonormal
basis.

I Necessarily, V is also linearly independent
I An orthogonal matrix Q is one in which columns (or rows)

form an orthonormal basis. (Necessarily square.)
I If Q orthogonal, QT = Q−1 (very handy for algebraic

manipulations)



Orthonormal basis

I An orthonormal basis can be thought of as a set of axes

I So the standard 3-d Cartesian axes are:1 0 0
0 1 0
0 0 1

 (2)

I An orthogonal matrix N can be interpreted as a rotation
(around the origin) operation

I Specifically, N is the rotation that transforms points into the
orthonormal basis space defined by the columns of N

I So, MN can be viewed as either:
I Rotating M by N; or
I “Viewing” M from the basis space (“axes”) of N



Eigenvalues and eigenvectors

I Let A be an n × n matrix.

I Let there be some vector x of size n× 1 (that is, n rows and 1
column), such that there exists a scalar (i.e. single real value)
λ such that:

Ax = λx (3)

I Then we say that:
I x is an eigenvector of A
I λ is an eigenvalue of A; and more specifically
I λ is the eigenvalue of A that corresponds to x.



Properties of eigenvalues and eigenvectors

I An nXn matrix has no more than n eigenvalues

I The eigenvectors of the one matrix A are linearly independent

I If A is symmetric and of rank r ≤ n, the eigenvectors are
orthogonal

I . . . and there are exactly r non-zero eigenvalues

I If the eigenvectors are normalized to unit length, they define
an orthonormal basis



Principle component analysis (PCA): motivation

I Data may have many variables, but fewer (important)
relations (components) as some variables (e.g. terms) may be
highly correlated

I Would like to shift variables (axes) so that they aligned along
important components:

I x = x1 axis along most important component
I y = x2 axis along next most important (orthogonal to x)
I z = x3 axis along next most important (orthogonal to x and y)
I xk axis long most important axis orthogonal to
{x1, x2, · · · , xk−1}

I We can then also “drop” the unimportant dimensions



PCA illustrated

I Center origin in mean of each dimension

I Align orthogonal axes along decreasing covariances 1

1Image source: Wikipedia



PCA (with dimensionality reduction)

I Start with m × n matrix M

I Shift each variable so that it has 0 mean, → X

I Calculate n × n covariance matrix C = 1
nXTX

I Calculate the size n, unit-length eigenvectors (orthonormal
basis) of C, and corresponding eigenvalues

I Choose d top eigenvalues, and concat to n × d matrix P

I P represents a rotation that drops some dimensions

I Now m × d matrix N = XP is the original data,
zero-centered, then transformed into the reduced,
(concept-)transformed space.



Singular value decomposition (SVD)

X is an m × n matrix. It can be decomposed into:

X = UΣVT (4)

where:

U is m ×m and orthogonal

Σ is m × n and diagonal (but not square!)

V is n × n and orthogonal

I Orthogonal matrices interpretable as rotation around origin

I Diagonal matrices as scales

I So Equation (4) interpretable as decomposing transform
represented by M into a rotation, then a scale, then another
rotation

I Important distinction from PCA: we don’t zero-center before
rotating!



SVD: singular values

Σ =



√
λ1 0 0 0 0 0 0
0

√
λ2 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0
√
λr 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 0


(5)

I r is rank of Xm×n (at most min(m, n), but can be less)

I λ1 > λ2 > . . . > λr are non-zero eigenvalues of XTX,
I Note: 1

nXTX is covaraince matrix (used in PCA)

I σi =
√
λi are singular values.

I Redundant dimensions are diagonal 0

I Not necessarily square, though extra column or row all 0



SVD: singular vectors

(
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34

)
=
(

u11 u12 u13
u21 u22 u23
u31 u32 u33

)( σ11 0 0 0
0 σ22 0 0
0 0 σ33 0

)(
v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

)

Xm×n = Um×mΣm×n (Vn×n)T (6)

I v̂i is n × 1 unit eigenvector for the eigenvalue λi .
I V = [v̂1, · · · , v̂r , v̂r+1, · · · , v̂n]

I [v̂1, · · · , v̂r ] is orthogonal
I v̂j , r < j ≤ n orthonormal “fillers”

I ûi is the m × 1 vector defined by ûi = 1
σi Xv̂i

I U = [û1, · · · , ûr , ûr+1, · · · , ûn]
I similarly “filled out” with m − r orthonormal vectors

I U and V hold left and right singular vectors of X



Interpreting SVD for TDM

Xt×d = Tt×tΣt×d (Dd×d)T (7)

I Each SV relates to a “semantic dimension” (“topic”)

I Σ gives importance of topic

I T a change of basis op, shifting terms into semantic space:

TTX = ΣDT (8)

I ΣDT are documents in semantic space

I DT change of basis op, shifting terms into semantic space:

DTXT = ΣTT (9)

(and ΣDT are the terms projected)

I T relates terms to topics; value gives strength. Interpretation
of negative values unclear.

I D relates docs to topics



Dimensionality reduction in SVD

I The {σ1, · · · , σr} values on the diagonal of Σ are ordered by
decreasing “importance” of the corresponding dimension

I We can reduce dimensionality to only top k concepts by
setting {σk+1, · · · , σr} to 0.

I This gives reduced representation:

Xt×d ≈ XKt×d = TKt×kΣKk×k (DKd×k)T (10)

I ΣKDK
T (k × d) represents docs (cols) in k-d latent space

I ΣKTK
T (k × t) represents terms (cols) in k-d latent space

I TK, DK retain term–topic, doc–topic relations for top k topics



Latent Semantic Analysis

X ≈ TKΣKDK
T (11)

I Rank-lowering SVD on the TDM is used in the cluster of
related techniques known as Latent Semantic Analysis

I The “big claim” for LSA that this captures the “semantic
structure” of the collection

I Matches by “topic”, not term

I Automatically expands term into underlying topic

I Allows semantically related documents (queries) to match,
even if different terms used

I (Also referred to as “Latent Semantic Indexing”, or LSI)



Document comparison

I ZK = ΣKDK
T represents docs (cols) in semantic space

I Documents di and dj can be compared using cosine distance
on i and j columns of ZK

I Similar to comparison on TDM, except:
I Compares by “concepts” (useful for short documents, e.g.

sentences)
I Dense, k-d representation, rather than sparse t-d

I Suits vector hardware, e.g. GPU

I Clustering can also be done in semantic space
I Again, faster due to short, dense vectors
I (though doing the SVD itself can be slow!)



Term comparison

I YK = ΣKTK
T represents terms (cols) in semantic space

I Terms ti and tj can be compared as cosine distance on i and j
columns of YK.

I And clustering can be done (as with docs)

I Also, ZK and YK are in same k-d space

I So we can directly compare terms with documents (though
what this precisely means...)



Searches in LSA space

I Search for a query q similar in LSA space to TDM space

I treat q as doc, calculate cosine with true docs in DK

I But q must first be converted into the k-dim form

I DK calculable as:

DK = XTTKΣK
−1 (12)

I Therefore qK calculated as

qK = qTKΣK
−1 (13)

I Semantic space performs automatic (global) query expansion
I Note: practicalities of query evaluation change, because:

I Even short queries have many “concepts”
I Docvecs no longer large and sparse, but short and dense



Folding new documents into space

I Recalculating full SVD when new documents added expensive
I (though there are now incremental algorithms available)

I But new documents can be “folded in” in same way as queries

I That is, calculate their k-d representation as dK = dTKΣK
−1

I Then add dK as new row to DK

I Folded-in documents, however, did not contribute to semantic
decomposition

I As more are added, representativeness of decomposition
declines

I Particularly if new documents are significantly different (e.g.
represent different concepts) from old ones



Latent-SVD as semantic tool

I Concept of “folding” alerts that not all documents need to be
included in SVD

I Provided coverage of co-occurrences is adequate
I For instance, could sample documents

I though this will miss rarer co-occurences (even though this
may be significant)

I One can view LSA-SVD not as index, but as semantic
transformation tool



Topic analysis

Xt×d = TKt×kΣKk×k (DKd×k)T (14)

I Left singular vectors TK map between k terms and “semantic
dimensions” (topics)

I Then column k of TK “describes” topic by giving strength of
association with each term

I Interpretation of negative weights unclear
I Many terms have some non-zero association with each topic,

though most are not “significant”



Topic analysis example

Tpc Terms Labels

0 iraq, percent, bank, rate, trad, shar, . . . ??Overall
1 iraq, kurd, saddam, missil, attack, baghdad, . . . Iraq
2 net, profit, loss, shar, incom, tax, dividend, . . . Financials
3 bank, govern, minist, israel, elect . . . ?Israel election
4 ton, wheat, oil, chin, trad . . . ?Resources
5 shar, stock, point, index, clos . . . Sharemarket

I Took LYRL-30k collection.

I Performed k = 100 LSA analysis using gensim toolkit
(needed 88 seconds on my laptop)

I Top positive terms for top 6 topics given above, with possible
labels (that I came up with)

I What do you think of these topics?



Topic analysis by documents

I Right singular vectors TK map between topics and documents

I (though these are not so easy to get out of gensim)

I Could in principle tell us what a document was “about”

I As with terms, one document can be associated with many
topics



LSA: computational complexity

Xl×d = Tt×tΣt×d (Dd×d)T (15)

I Time complexity of full SVD is O(min{t2d , td2}) (ouch!)2

I For reduced dimension k , this can be reduced3 to O(tdk)
I For sparse matrices (and the TDM is sparse) and

(approximate) incremental methods, faster still
I e.g. gensim claims4 O(duk + tk2), where u is the average

number of words (terms?) per document. I.e. ≈ O(z), where
z is the number of postings in collection (non-zero cells in
TDM).

NOTE: Computational complexity of LSA (equiv.: low-rank or thin
SVD on sparse matrices) not well documented; would make good
final project for someone with strong matrix algebra

2Holmes, Gray, Isbell, “Fast SVD”, 2007.
3Brand, “Fast Low-Rank Modifications of the Thin SVD”, 2006
4http://bit.ly/1kZuEU0

http://bit.ly/1kZuEU0


LSA in practice

I LSA widely used, particularly in industry and in non-core CS
tasks (e.g. automatic marking of student essays)

I Has not been widely adopted in “core” IR:
I SVD was too compute intensive (still is for large corpora)
I Pseudo-relevance feedback techniques (e.g. Rocchio) and

other “local” query expansion techniques work as well or better
I Inability to do exact term matching a drawback

I LSA may be useful as component in larger system (e.g. for
global expansion, topic analysis), especially if built on sample
to reduce computation



Topic modelling

I Through the left and right singular vectors, LSA provides a
form of topic modelling (viz. identification of semantic
concepts to which terms and documents are co-clustered)

I Has been criticism of the (lack of) theoretical basis on which
LSA topics stand

I Also difficulty of interpreting the term–topic association scores

I Recent attention has turned to probabilistic topic models



Looking back and forward

Back: SVD

I PCA shifts and rotates TDM to align
dimensions along term covariances

I SVD splits X into UΣV

I We can reduce from full rank r to
k-dimensional space by dropping
smaller singular values in Σ

I In LSA, the SVD is seen as mapping
from “terms” to “concepts”

I Reduction to k dimensions extracts k
“key concepts”



Looking back and forward

Back
LSA

I LSA uses reduced-rank SVD to project
TDM into “semantic space”

I Reduced dimensions make clustering
faster

I Term co-association in topics provides
term expansions (particularly for
queries or very short documents)

I LSA provides a form of topic modelling



Looking back and forward

Forward

I Probablistic LSA and LDA (week after
next) provide a probabilistic approach
to extracting concepts from TDM
space

I Next week, will look at geometric
approaches to text classification



Further reading

I Jonathon Shlens, “A Tutorial on Principal Component Analysis”5

(2005 (?)). Also discusses singular value decomposition.

I Deerwester, Dumais, Furnas, Landauer, and Harshman, “Indexing
by Latent Semantic Analysis”, JASIST, 1990.

I Berry, Dumais, and O’Brien, “Using Linear Algebra for Intelligent
Information Retrieval”, SIAM, 1995.

I Chapter 18, “Matrix decompositions and latent semantic
indexing”6, of Manning, Raghavan, and Schutze, Introduction to
Information Retrieval, CUP, 2009.

5http://www.cs.princeton.edu/picasso/mats/

PCA-Tutorial-Intuition_jp.pdf
6http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf


Appendix: Dimensionality reduction example

( t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

) (
σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 0 0

)  d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35
d41 d42 d43 d44 d45
d51 d52 d53 d54 d55


X4×5 = T4×4 Σ4×5 (D5×5)T

I t = 4 terms, d = 5 documents
I Here, rank r = 3

I r < t, implies term made redundant by others

I d5, d4, and t4 can be dropped, and Σ shrunk to r × r = 3× 3

I Dimensionality can be lower from r = 3 to k = 2 by setting
lowest-weight SV σ3 to 0

I And then d3 and t3 can be dropped, and Σ shrunk to
k × k = 2× 2



Appendix: Dimensionality reduction example

( t11 t12 t13
t21 t22 t23
t31 t32 t33
t41 t42 t43

) (
σ1 0 0
0 σ2 0
0 0 σ3

) (
d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35

)
TR4×3 ΣR3×3 (DR5×3)T

I t = 4 terms, d = 5 documents
I Here, rank r = 3

I r < t, implies term made redundant by others

I d5, d4, and t4 can be dropped, and Σ shrunk to r × r = 3× 3

I Dimensionality can be lower from r = 3 to k = 2 by setting
lowest-weight SV σ3 to 0

I And then d3 and t3 can be dropped, and Σ shrunk to
k × k = 2× 2



Appendix: Dimensionality reduction example

( t11 t12 t13
t21 t22 t23
t31 t32 t33
t41 t42 t43

) (
σ1 0 0
0 σ2 0
0 0 0

) (
d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35

)
TR4×3 ΣR3×3 (DR5×3)T

I t = 4 terms, d = 5 documents
I Here, rank r = 3

I r < t, implies term made redundant by others

I d5, d4, and t4 can be dropped, and Σ shrunk to r × r = 3× 3

I Dimensionality can be lower from r = 3 to k = 2 by setting
lowest-weight SV σ3 to 0

I And then d3 and t3 can be dropped, and Σ shrunk to
k × k = 2× 2



Appendix: Dimensionality reduction example

( t11 t12
t21 t22
t31 t32
t41 t42

) (
σ1 0
0 σ2

) (
d11 d12 d13 d14 d15
d21 d22 d23 d24 d25

)
TK4×2 ΣK2×2 (DK5×2)T

I t = 4 terms, d = 5 documents
I Here, rank r = 3

I r < t, implies term made redundant by others

I d5, d4, and t4 can be dropped, and Σ shrunk to r × r = 3× 3

I Dimensionality can be lower from r = 3 to k = 2 by setting
lowest-weight SV σ3 to 0

I And then d3 and t3 can be dropped, and Σ shrunk to
k × k = 2× 2
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