Lecture 7: Matrix decomposition and LSA

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 7

What we'll learn in this lecture

- A tutorial on matrix algebra
- A simple matrix transformation (Principal Component Analysis) which aligns data with most "important" correlated dimensions
- A related matrix decomposition called Singular Value Decomposition (SVD)
- How to interpret SVD when performed on a TDM
- An initial look at Latent Semantic Analysis (LSA) which uses reduced-rank SVD to find "concepts" in a document corpus

Matrix concepts

- \mathbf{X} is a matrix with m rows $\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ and n columns $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\left(\mathbf{X}_{m \times n}\right.$ for short)
- Applied to TDM, rows are terms, columns are docs (NB)
- $x_{i j}$ is the element in row i, column j of \mathbf{X}
- In TDM, this is a (possibly 0) term posting
- $\left(\mathbf{X}_{n \times m}\right)^{T}$ is the transpose of $\mathbf{X} m n$, where $x_{i j}^{T}=x_{j i}$
- In TDM, transposing is analogous to view points as terms in document space, rather than documents in term space
- A square matrix has the same number of rows as columns ($m=n$)
- A diagonal matrix is one which has non-zero values only on the diagonal (i.e., $x_{i j}=0$ if $i \neq j$).

Matrix multiplication and geometry

- If \mathbf{X} is $m \times n$ and \mathbf{Y} is $n \times p$, then $\mathbf{Z}=\mathbf{X Y}$ is $m \times p$ (matrix multiplication)
- Matrix multiplication is associative:

$$
\begin{equation*}
\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C} \tag{1}
\end{equation*}
$$

- If \mathbf{X} is $m \times d$, and \mathbf{Y} is square $d \times d$, then:
- \mathbf{X} can be interpreted as locating m items in d-dimensional space
- Y can be interpreted as some (combined) geometrical transformation (rotate, shear, scale, translate)
- In particular, if \mathbf{Y} is a diagonal vector, it can be interpreted as a scale (dimensions scaled, but remain independent)

More matrix concepts

- The identity matrix \mathbf{I} is a square matrix with 1 in the diagonals, 0 elsewhere
- $\mathbf{M}_{\times n} \cdot \mathbf{I}_{n \times n}=\mathbf{M}$
- \mathbf{M}^{-1} is the inverse of \mathbf{M} if $\mathbf{M M}^{-1}=\mathbf{I}$
- For a diagonal matrix $\mathbf{d}, \mathbf{d}^{-1}$ has the diagonal values $d_{i, i}^{-1}=1 / d_{i, i}$ (and 0 elsewhere)

Rank and orthogonality

- A set of vectors $\mathcal{V}=\left\{v_{1}, v_{2}, \cdot, v_{n}\right\}$ is linearly independent if no vector v_{i} can be expressed as a weighted combination of the other vectors $v_{1}, \cdots, v_{i-1}, v_{i+1}, v_{n}$.
- An $m \times n$ matrix \mathbf{M} has rank $r(r \leq \min (m, n))$ if r is the size of the largest set of linearly independent row (or column) vectors of \mathbf{M}
- Two vectors \mathbf{v}, \mathbf{w}, of same length n, are orthogonal ("at right angles") if $\mathbf{v} \cdot \mathbf{w}=0$.
- \mathbf{v} and \mathbf{w} are orthonormal if in addition they are unit vectors.
- If we have a set \mathcal{V} of n orthonormal vectors $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$, and each vector is also of length n, then \mathcal{V} is an orthonormal basis.
- Necessarily, \mathcal{V} is also linearly independent
- An orthogonal matrix \mathbf{Q} is one in which columns (or rows) form an orthonormal basis. (Necessarily square.)
- If \mathbf{Q} orthogonal, $\mathbf{Q}^{T}=\mathbf{Q}^{-1}$ (very handy for algebraic manipulations)

Orthonormal basis

- An orthonormal basis can be thought of as a set of axes
- So the standard 3-d Cartesian axes are:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \tag{2}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- An orthogonal matrix \mathbf{N} can be interpreted as a rotation (around the origin) operation
- Specifically, \mathbf{N} is the rotation that transforms points into the orthonormal basis space defined by the columns of \mathbf{N}
- So, MN can be viewed as either:
- Rotating M by N; or
- "Viewing" M from the basis space ("axes") of \mathbf{N}

Eigenvalues and eigenvectors

- Let \mathbf{A} be an $n \times n$ matrix.
- Let there be some vector \mathbf{x} of size $n \times 1$ (that is, n rows and 1 column), such that there exists a scalar (i.e. single real value) λ such that:

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda x \tag{3}
\end{equation*}
$$

- Then we say that:
- \mathbf{x} is an eigenvector of \mathbf{A}
- λ is an eigenvalue of \mathbf{A}; and more specifically
- λ is the eigenvalue of \mathbf{A} that corresponds to \mathbf{x}.

Properties of eigenvalues and eigenvectors

- An $n X n$ matrix has no more than n eigenvalues
- The eigenvectors of the one matrix \mathbf{A} are linearly independent
- If \mathbf{A} is symmetric and of rank $r \leq n$, the eigenvectors are orthogonal
- and there are exactly r non-zero eigenvalues
- If the eigenvectors are normalized to unit length, they define an orthonormal basis

Principle component analysis (PCA): motivation

- Data may have many variables, but fewer (important) relations (components) as some variables (e.g. terms) may be highly correlated
- Would like to shift variables (axes) so that they aligned along important components:
- $x=x_{1}$ axis along most important component
- $y=x_{2}$ axis along next most important (orthogonal to x)
- $z=x_{3}$ axis along next most important (orthogonal to x and y)
- x_{k} axis long most important axis orthogonal to $\left\{x_{1}, x_{2}, \cdots, x_{k-1}\right\}$
- We can then also "drop" the unimportant dimensions

PCA illustrated

- Center origin in mean of each dimension
- Align orthogonal axes along decreasing covariances ${ }^{1}$

PCA (with dimensionality reduction)

- Start with $m \times n$ matrix M
- Shift each variable so that it has 0 mean, $\rightarrow \mathbf{X}$
- Calculate $n \times n$ covariance matrix $\mathbf{C}=\frac{1}{n} \mathbf{X}^{T} \mathbf{X}$
- Calculate the size n, unit-length eigenvectors (orthonormal basis) of \mathbf{C}, and corresponding eigenvalues
- Choose d top eigenvalues, and concat to $n \times d$ matrix \mathbf{P}
- \mathbf{P} represents a rotation that drops some dimensions
- Now $m \times d$ matrix $\mathbf{N}=\mathbf{X P}$ is the original data, zero-centered, then transformed into the reduced, (concept-)transformed space.

Singular value decomposition (SVD)

\mathbf{X} is an $m \times n$ matrix. It can be decomposed into:

$$
\begin{equation*}
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \tag{4}
\end{equation*}
$$

where:
\mathbf{U} is $m \times m$ and orthogonal
Σ is $m \times n$ and diagonal (but not square!)
\mathbf{V} is $n \times n$ and orthogonal

- Orthogonal matrices interpretable as rotation around origin
- Diagonal matrices as scales
- So Equation (4) interpretable as decomposing transform represented by \mathbf{M} into a rotation, then a scale, then another rotation
- Important distinction from PCA: we don't zero-center before rotating!

SVD: singular values

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccccccc}
\sqrt{\lambda_{1}} & 0 & 0 & 0 & 0 & 0 & 0 \tag{5}\\
0 & \sqrt{\lambda_{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \sqrt{\lambda_{r}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- r is rank of $\mathbf{X}_{m \times n}$ (at most $\min (m, n)$, but can be less)
- $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{r}$ are non-zero eigenvalues of $\mathbf{X}^{T} \mathbf{X}$,
- Note: $\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}$ is covaraince matrix (used in PCA)
- $\sigma_{i}=\sqrt{\lambda_{i}}$ are singular values.
- Redundant dimensions are diagonal 0
- Not necessarily square, though extra column or row all 0

SVD: singular vectors

$$
\begin{gather*}
\left(\begin{array}{llll}
x_{11} & x_{12} & x_{13} & x_{14} \\
x_{21} & x_{22} & x_{23} & x_{24} \\
x_{31} & x_{32} & x_{33} & x_{34}
\end{array}\right)=\left(\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
u_{21} \\
u_{31} & u_{32} & u_{23} \\
u_{33} & u_{33}
\end{array}\right)\left(\begin{array}{cccc}
\sigma_{11} & 0 & 0 & 0 \\
0 & \sigma_{22} & 0 & 0 \\
0 & 0 & \sigma_{33} & 0
\end{array}\right)\left(\begin{array}{cccc}
v_{11} & v_{12} & v_{13} & v_{14} \\
v_{21} & v_{22} & v_{23} & v_{24} \\
v_{31} & v_{32} & v_{33} & v_{34} \\
v_{41} & v_{42} & v_{43} & v_{44}
\end{array}\right) \\
\mathbf{X}_{m \times n}=\mathbf{U}_{m \times m} \boldsymbol{\Sigma}_{m \times n}\left(\mathbf{V}_{n \times n}\right)^{T} \tag{6}
\end{gather*}
$$

- $\hat{\mathbf{v}}_{i}$ is $n \times 1$ unit eigenvector for the eigenvalue λ_{i}.
- $\mathbf{V}=\left[\hat{\mathbf{v}}_{1}, \cdots, \hat{\mathbf{v}}_{r}, \hat{\mathbf{v}}_{r+1}, \cdots, \hat{\mathbf{v}}_{n}\right]$
- $\left[\hat{\mathbf{v}}_{1}, \cdots, \hat{\mathbf{v}}_{r}\right]$ is orthogonal
- $\hat{\mathbf{v}}_{j}, r<j \leq n$ orthonormal "fillers"
- $\hat{\mathbf{u}}_{i}$ is the $m \times 1$ vector defined by $\hat{\mathbf{u}}_{i}=\frac{1}{\sigma i} \mathbf{X} \hat{\mathbf{v}}_{i}$
- $\mathbf{U}=\left[\hat{\mathbf{u}}_{1}, \cdots, \hat{\mathbf{u}}_{r}, \hat{\mathbf{u}}_{r+1}, \cdots, \hat{\mathbf{u}}_{n}\right]$
- similarly "filled out" with $m-r$ orthonormal vectors
- \mathbf{U} and \mathbf{V} hold left and right singular vectors of \mathbf{X}

Interpreting SVD for TDM

$$
\begin{equation*}
\mathbf{X}_{t \times d}=\mathbf{T}_{t \times t} \boldsymbol{\Sigma}_{t \times d}\left(\mathbf{D}_{d \times d}\right)^{T} \tag{7}
\end{equation*}
$$

- Each SV relates to a "semantic dimension" ("topic")
- $\boldsymbol{\Sigma}$ gives importance of topic
- T a change of basis op, shifting terms into semantic space:

$$
\begin{equation*}
\mathbf{T}^{T} \mathbf{X}=\boldsymbol{\Sigma} \mathbf{D}^{T} \tag{8}
\end{equation*}
$$

- $\boldsymbol{\Sigma} \mathbf{D}^{T}$ are documents in semantic space
- \mathbf{D}^{T} change of basis op, shifting terms into semantic space:

$$
\begin{equation*}
\mathbf{D}^{T} \mathbf{X}^{T}=\boldsymbol{\Sigma} \mathbf{T}^{T} \tag{9}
\end{equation*}
$$

(and $\boldsymbol{\Sigma} \mathbf{D}^{T}$ are the terms projected)

- T relates terms to topics; value gives strength. Interpretation of negative values unclear.
- D relates docs to topics

Dimensionality reduction in SVD

- The $\left\{\sigma_{1}, \cdots, \sigma_{r}\right\}$ values on the diagonal of $\boldsymbol{\Sigma}$ are ordered by decreasing "importance" of the corresponding dimension
- We can reduce dimensionality to only top k concepts by setting $\left\{\sigma_{k+1}, \cdots, \sigma_{r}\right\}$ to 0 .
- This gives reduced representation:

$$
\begin{equation*}
\mathbf{X}_{t \times d} \approx \mathbf{X}_{\mathbf{K}_{t \times d}}=\mathbf{T}_{\mathbf{K} t \times k} \boldsymbol{\Sigma}_{\mathbf{K} k \times k}\left(\mathbf{D}_{\mathbf{K} d \times k}\right)^{T} \tag{10}
\end{equation*}
$$

- $\boldsymbol{\Sigma}_{\mathbf{K}} \mathbf{D}_{\mathbf{K}}{ }^{T}(k \times d)$ represents docs (cols) in k-d latent space
- $\boldsymbol{\Sigma}_{\mathbf{K}} \mathbf{T}_{\mathbf{K}}{ }^{T}(k \times t)$ represents terms (cols) in k-d latent space
- $\mathbf{T}_{\mathbf{K}}, \mathbf{D}_{\mathbf{K}}$ retain term-topic, doc-topic relations for top k topics

Latent Semantic Analysis

$$
\begin{equation*}
\mathbf{X} \approx \mathbf{T}_{K} \boldsymbol{\Sigma}_{\mathrm{K}} \mathrm{D}_{\mathrm{K}}{ }^{\top} \tag{11}
\end{equation*}
$$

- Rank-lowering SVD on the TDM is used in the cluster of related techniques known as Latent Semantic Analysis
- The "big claim" for LSA that this captures the "semantic structure" of the collection
- Matches by "topic", not term
- Automatically expands term into underlying topic
- Allows semantically related documents (queries) to match, even if different terms used
- (Also referred to as "Latent Semantic Indexing", or LSI)

Document comparison

- $\mathbf{Z}_{\mathbf{K}}=\boldsymbol{\Sigma}_{\mathbf{K}} \mathbf{D}_{\mathbf{K}}{ }^{T}$ represents docs (cols) in semantic space
- Documents d_{i} and d_{j} can be compared using cosine distance on i and j columns of \mathbf{Z}_{K}
- Similar to comparison on TDM, except:
- Compares by "concepts" (useful for short documents, e.g. sentences)
- Dense, k-d representation, rather than sparse t-d
- Suits vector hardware, e.g. GPU
- Clustering can also be done in semantic space
- Again, faster due to short, dense vectors
- (though doing the SVD itself can be slow!)

Term comparison

- $\mathbf{Y}_{\mathbf{K}}=\boldsymbol{\Sigma}_{\mathbf{K}} \mathbf{T}_{\mathbf{K}}{ }^{\top}$ represents terms (cols) in semantic space
- Terms t_{i} and t_{j} can be compared as cosine distance on i and j columns of \mathbf{Y}_{K}.
- And clustering can be done (as with docs)
- Also, $\mathbf{Z}_{\mathbf{K}}$ and $\mathbf{Y}_{\mathbf{K}}$ are in same k-d space
- So we can directly compare terms with documents (though what this precisely means...)

Searches in LSA space

- Search for a query q similar in LSA space to TDM space
- treat q as doc, calculate cosine with true docs in \mathbf{D}_{K}
- But q must first be converted into the k-dim form
- \mathbf{D}_{K} calculable as:

$$
\begin{equation*}
\mathbf{D}_{\mathbf{K}}=\mathbf{X}^{T} \mathbf{T}_{\mathbf{K}} \boldsymbol{\Sigma}_{\mathbf{K}}{ }^{-1} \tag{12}
\end{equation*}
$$

- Therefore q_{K} calculated as

$$
\begin{equation*}
\mathbf{q}_{\mathbf{K}}=\mathbf{q} \mathbf{T}_{\mathbf{K}} \boldsymbol{\Sigma}_{\mathbf{K}}{ }^{-1} \tag{13}
\end{equation*}
$$

- Semantic space performs automatic (global) query expansion
- Note: practicalities of query evaluation change, because:
- Even short queries have many "concepts"
- Docvecs no longer large and sparse, but short and dense

Folding new documents into space

- Recalculating full SVD when new documents added expensive
- (though there are now incremental algorithms available)
- But new documents can be "folded in" in same way as queries
- That is, calculate their k-d representation as $\mathbf{d}_{\mathbf{K}}=\mathbf{d} \mathbf{T}_{\mathbf{K}} \boldsymbol{\Sigma}_{\mathbf{K}}{ }^{-1}$
- Then add $\mathbf{d}_{\mathbf{K}}$ as new row to \mathbf{D}_{K}
- Folded-in documents, however, did not contribute to semantic decomposition
- As more are added, representativeness of decomposition declines
- Particularly if new documents are significantly different (e.g. represent different concepts) from old ones

Latent-SVD as semantic tool

- Concept of "folding" alerts that not all documents need to be included in SVD
- Provided coverage of co-occurrences is adequate
- For instance, could sample documents
- though this will miss rarer co-occurences (even though this may be significant)
- One can view LSA-SVD not as index, but as semantic transformation tool

Topic analysis

$$
\begin{equation*}
\mathbf{X}_{t \times d}=\mathbf{T}_{\mathbf{K} t \times k} \boldsymbol{\Sigma}_{\mathbf{K} k \times k}\left(\mathbf{D}_{\mathbf{K} d \times k}\right)^{T} \tag{14}
\end{equation*}
$$

- Left singular vectors $\mathbf{T}_{\mathbf{K}}$ map between k terms and "semantic dimensions" (topics)
- Then column k of $\mathbf{T}_{\mathbf{K}}$ "describes" topic by giving strength of association with each term
- Interpretation of negative weights unclear
- Many terms have some non-zero association with each topic, though most are not "significant"

Topic analysis example

Tpc	Terms	Labels
0	iraq, percent, bank, rate, trad, shar, ...	??Overall
1	iraq, kurd, saddam, missil, attack, baghdad, ...	Iraq
2	net, profit, loss, shar, incom, tax, dividend, ...	Financials
3	bank, govern, minist, israel, elect ...	?Israel election
4	ton, wheat, oil, chin, trad ...	?Resources
5	shar, stock, point, index, clos ...	Sharemarket

- Took LYRL-30k collection.
- Performed $k=100$ LSA analysis using gensim toolkit (needed 88 seconds on my laptop)
- Top positive terms for top 6 topics given above, with possible labels (that I came up with)
- What do you think of these topics?

Topic analysis by documents

- Right singular vectors $\mathbf{T}_{\mathbf{K}}$ map between topics and documents
- (though these are not so easy to get out of gensim)
- Could in principle tell us what a document was "about"
- As with terms, one document can be associated with many topics

LSA: computational complexity

$$
\begin{equation*}
\mathbf{X}_{1 \times d}=\mathbf{T}_{t \times t} \boldsymbol{\Sigma}_{t \times d}\left(\mathbf{D}_{d \times d}\right)^{T} \tag{15}
\end{equation*}
$$

- Time complexity of full SVD is $O\left(\min \left\{t^{2} d, t d^{2}\right\}\right)(\text { ouch! })^{2}$
- For reduced dimension k, this can be reduced ${ }^{3}$ to $O(t d k)$
- For sparse matrices (and the TDM is sparse) and (approximate) incremental methods, faster still
- e.g. gensim claims ${ }^{4} O\left(d u k+t k^{2}\right)$, where u is the average number of words (terms?) per document. I.e. $\approx O(z)$, where z is the number of postings in collection (non-zero cells in TDM).

NOTE: Computational complexity of LSA (equiv.: low-rank or thin SVD on sparse matrices) not well documented; would make good final project for someone with strong matrix algebra

[^0]
LSA in practice

- LSA widely used, particularly in industry and in non-core CS tasks (e.g. automatic marking of student essays)
- Has not been widely adopted in "core" IR:
- SVD was too compute intensive (still is for large corpora)
- Pseudo-relevance feedback techniques (e.g. Rocchio) and other "local" query expansion techniques work as well or better
- Inability to do exact term matching a drawback
- LSA may be useful as component in larger system (e.g. for global expansion, topic analysis), especially if built on sample to reduce computation

Topic modelling

- Through the left and right singular vectors, LSA provides a form of topic modelling (viz. identification of semantic concepts to which terms and documents are co-clustered)
- Has been criticism of the (lack of) theoretical basis on which LSA topics stand
- Also difficulty of interpreting the term-topic association scores
- Recent attention has turned to probabilistic topic models

Looking back and forward

Back: SVD

- PCA shifts and rotates TDM to align dimensions along term covariances
- SVD splits \mathbf{X} into $\mathbf{U} \mathbf{\Sigma V}$
- We can reduce from full rank r to k-dimensional space by dropping smaller singular values in $\boldsymbol{\Sigma}$
- In LSA, the SVD is seen as mapping from "terms" to "concepts"
- Reduction to k dimensions extracts k "key concepts"

Looking back and forward

Back
 LSA

- LSA uses reduced-rank SVD to project TDM into "semantic space"
- Reduced dimensions make clustering faster
- Term co-association in topics provides term expansions (particularly for queries or very short documents)
- LSA provides a form of topic modelling

Looking back and forward

Forward

- Probablistic LSA and LDA (week after next) provide a probabilistic approach to extracting concepts from TDM space
- Next week, will look at geometric approaches to text classification

Further reading

- Jonathon Shlens, "A Tutorial on Principal Component Analysis" ${ }^{5}$ (2005 (?)). Also discusses singular value decomposition.
- Deerwester, Dumais, Furnas, Landauer, and Harshman, "Indexing by Latent Semantic Analysis", JASIST, 1990.
- Berry, Dumais, and O'Brien, "Using Linear Algebra for Intelligent Information Retrieval", SIAM, 1995.
- Chapter 18, "Matrix decompositions and latent semantic indexing" ${ }^{6}$, of Manning, Raghavan, and Schutze, Introduction to Information Retrieval, CUP, 2009.

[^1]
Appendix: Dimensionality reduction example

$$
\begin{aligned}
& \mathbf{X}_{4 \times 5}=\begin{array}{lll}
\mathbf{T}_{4 \times 4} & \boldsymbol{\Sigma}_{4 \times 5} & \left(\mathbf{D}_{5 \times 5}\right)^{T}
\end{array}
\end{aligned}
$$

- $t=4$ terms, $d=5$ documents
- Here, rank $r=3$
- $r<t$, implies term made redundant by others
- d_{5}, d_{4}, and t_{4} can be dropped, and $\boldsymbol{\Sigma}$ shrunk to $r \times r=3 \times 3$

Appendix: Dimensionality reduction example

$$
\begin{array}{ccc}
\left(\begin{array}{lll}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} & t_{23} \\
t_{31} & t_{32} t_{33} \\
t_{41} & t_{42} & t_{43}
\end{array}\right) & \left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right) & \left(\begin{array}{lllll}
d_{11} & d_{12} & d_{13} & d_{14} & d_{15} \\
d_{21} & d_{22} & d_{23} & d_{24} & d_{25} \\
d_{31} & d_{32} & d_{33} & d_{34} & d_{35}
\end{array}\right) \\
\mathbf{T}_{\mathbf{R} 4 \times 3} & \mathbf{\Sigma}_{\mathbf{R} 3 \times 3} & \left(\mathbf{D}_{\mathbf{R} 5 \times 3}\right)^{T}
\end{array}
$$

- $t=4$ terms, $d=5$ documents
- Here, rank $r=3$
- $r<t$, implies term made redundant by others
- d_{5}, d_{4}, and t_{4} can be dropped, and $\boldsymbol{\Sigma}$ shrunk to $r \times r=3 \times 3$
- Dimensionality can be lower from $r=3$ to $k=2$ by setting lowest-weight SV σ_{3} to 0

Appendix: Dimensionality reduction example

$$
\begin{array}{ccc}
\left(\begin{array}{ccc}
t_{11} & t_{12} & t_{13} \\
t_{21} & t_{22} t_{22} & t_{23} \\
t_{41} & t_{42} t_{33}
\end{array}\right) & \left(\begin{array}{ccccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & & 0
\end{array}\right) & \left(\begin{array}{cccc}
d_{11} & d_{12} & d_{13} & d_{14} \\
d_{12} & d_{15} \\
d_{21} & d_{22} & d_{23} & d_{24} \\
d_{31} & d_{32} \\
d_{32} & d_{33} & d_{34} & d_{35}
\end{array}\right) \\
\mathbf{T}_{\mathbf{R} 4 \times 3} & \mathbf{\Sigma}_{\mathbf{R} 3 \times 3} & \left(\mathbf{D}_{\mathbf{R} 5 \times 3}\right)^{T}
\end{array}
$$

- $t=4$ terms, $d=5$ documents
- Here, rank $r=3$
- $r<t$, implies term made redundant by others
- d_{5}, d_{4}, and t_{4} can be dropped, and $\boldsymbol{\Sigma}$ shrunk to $r \times r=3 \times 3$
- Dimensionality can be lower from $r=3$ to $k=2$ by setting lowest-weight SV σ_{3} to 0
- And then d_{3} and t_{3} can be dropped, and $\boldsymbol{\Sigma}$ shrunk to $k \times k=2 \times 2$

Appendix: Dimensionality reduction example

$$
\begin{aligned}
& \begin{array}{lll}
\mathbf{T}_{\mathrm{K} 4 \times 2} & \boldsymbol{\Sigma}_{\mathrm{K} 2 \times 2} & \left(\mathrm{D}_{\mathrm{K} 5 \times 2}\right)^{T}
\end{array}
\end{aligned}
$$

- $t=4$ terms, $d=5$ documents
- Here, rank $r=3$
- $r<t$, implies term made redundant by others
- d_{5}, d_{4}, and t_{4} can be dropped, and $\boldsymbol{\Sigma}$ shrunk to $r \times r=3 \times 3$
- Dimensionality can be lower from $r=3$ to $k=2$ by setting lowest-weight SV σ_{3} to 0
- And then d_{3} and t_{3} can be dropped, and $\boldsymbol{\Sigma}$ shrunk to $k \times k=2 \times 2$

[^0]: ${ }^{2}$ Holmes, Gray, Isbell, "Fast SVD", 2007.
 ${ }^{3}$ Brand, "Fast Low-Rank Modifications of the Thin SVD", 2006
 ${ }^{4}$ http://bit.ly/1kZuEU0

[^1]: ${ }^{5}$ http://www.cs.princeton.edu/picasso/mats/
 PCA-Tutorial-Intuition_jp.pdf
 ${ }^{6}$ http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

