
Lecture 7: Matrix decomposition and LSA

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 7



What we’ll learn in this lecture

I A tutorial on matrix algebra

I A simple matrix transformation (Principal Component
Analysis) which aligns data with most “important” correlated
dimensions

I A related matrix decomposition called Singular Value
Decomposition (SVD)

I How to interpret SVD when performed on a TDM

I An initial look at Latent Semantic Analysis (LSA) which uses
reduced-rank SVD to find “concepts” in a document corpus



Matrix concepts

I X is a matrix with m rows {r1, r2, . . . , rm} and n columns
{c1, c2, . . . , cn} (Xm×n for short)

I Applied to TDM, rows are terms, columns are docs (NB)

I xij is the element in row i , column j of X
I In TDM, this is a (possibly 0) term posting

I (Xn×m)T is the transpose of Xmn, where xTij = xji
I In TDM, transposing is analogous to view points as terms in

document space, rather than documents in term space

I A square matrix has the same number of rows as columns
(m = n)

I A diagonal matrix is one which has non-zero values only on
the diagonal (i.e., xij = 0 if i 6= j).



Matrix multiplication and geometry

I If X is m × n and Y is n × p, then Z = XY is m × p (matrix
multiplication)

I Matrix multiplication is associative:

A(BC) = (AB)C (1)

I If X is m × d , and Y is square d × d , then:
I X can be interpreted as locating m items in d-dimensional

space
I Y can be interpreted as some (combined) geometrical

transformation (rotate, shear, scale, translate)

I In particular, if Y is a diagonal vector, it can be interpreted as
a scale (dimensions scaled, but remain independent)



More matrix concepts

I The identity matrix I is a square matrix with 1 in the
diagonals, 0 elsewhere

I M·×n · In×n = M

I M−1 is the inverse of M if MM−1 = I

I For a diagonal matrix d, d−1 has the diagonal values
d−1
i ,i = 1/di ,i (and 0 elsewhere)



Rank and orthogonality
I A set of vectors V = {v1, v2, ·, vn} is linearly independent if no

vector vi can be expressed as a weighted combination of the
other vectors v1, · · · , vi−1, vi+1, vn.

I An m× n matrix M has rank r (r ≤ min(m, n)) if r is the size
of the largest set of linearly independent row (or column)
vectors of M

I Two vectors v, w, of same length n, are orthogonal (“at right
angles”) if v ·w = 0.

I v and w are orthonormal if in addition they are unit vectors.
I If we have a set V of n orthonormal vectors {v1, v2, · · · , vn},

and each vector is also of length n, then V is an orthonormal
basis.

I Necessarily, V is also linearly independent
I An orthogonal matrix Q is one in which columns (or rows)

form an orthonormal basis. (Necessarily square.)
I If Q orthogonal, QT = Q−1 (very handy for algebraic

manipulations)



Orthonormal basis

I An orthonormal basis can be thought of as a set of axes

I So the standard 3-d Cartesian axes are:1 0 0
0 1 0
0 0 1

 (2)

I An orthogonal matrix N can be interpreted as a rotation
(around the origin) operation

I Specifically, N is the rotation that transforms points into the
orthonormal basis space defined by the columns of N

I So, MN can be viewed as either:
I Rotating M by N; or
I “Viewing” M from the basis space (“axes”) of N



Eigenvalues and eigenvectors

I Let A be an n × n matrix.

I Let there be some vector x of size n× 1 (that is, n rows and 1
column), such that there exists a scalar (i.e. single real value)
λ such that:

Ax = λx (3)

I Then we say that:
I x is an eigenvector of A
I λ is an eigenvalue of A; and more specifically
I λ is the eigenvalue of A that corresponds to x.



Properties of eigenvalues and eigenvectors

I An nXn matrix has no more than n eigenvalues

I The eigenvectors of the one matrix A are linearly independent

I If A is symmetric and of rank r ≤ n, the eigenvectors are
orthogonal

I . . . and there are exactly r non-zero eigenvalues

I If the eigenvectors are normalized to unit length, they define
an orthonormal basis



Principle component analysis (PCA): motivation

I Data may have many variables, but fewer (important)
relations (components) as some variables (e.g. terms) may be
highly correlated

I Would like to shift variables (axes) so that they aligned along
important components:

I x = x1 axis along most important component
I y = x2 axis along next most important (orthogonal to x)
I z = x3 axis along next most important (orthogonal to x and y)
I xk axis long most important axis orthogonal to
{x1, x2, · · · , xk−1}

I We can then also “drop” the unimportant dimensions



PCA illustrated

I Center origin in mean of each dimension

I Align orthogonal axes along decreasing covariances 1

1Image source: Wikipedia



PCA (with dimensionality reduction)

I Start with m × n matrix M

I Shift each variable so that it has 0 mean, → X

I Calculate n × n covariance matrix C = 1
nXTX

I Calculate the size n, unit-length eigenvectors (orthonormal
basis) of C, and corresponding eigenvalues

I Choose d top eigenvalues, and concat to n × d matrix P

I P represents a rotation that drops some dimensions

I Now m × d matrix N = XP is the original data,
zero-centered, then transformed into the reduced,
(concept-)transformed space.



Singular value decomposition (SVD)

X is an m × n matrix. It can be decomposed into:

X = UΣVT (4)

where:

U is m ×m and orthogonal

Σ is m × n and diagonal (but not square!)

V is n × n and orthogonal

I Orthogonal matrices interpretable as rotation around origin

I Diagonal matrices as scales

I So Equation (4) interpretable as decomposing transform
represented by M into a rotation, then a scale, then another
rotation

I Important distinction from PCA: we don’t zero-center before
rotating!



SVD: singular values

Σ =



√
λ1 0 0 0 0 0 0
0

√
λ2 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0
√
λr 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 0


(5)

I r is rank of Xm×n (at most min(m, n), but can be less)

I λ1 > λ2 > . . . > λr are non-zero eigenvalues of XTX,
I Note: 1

nXTX is covaraince matrix (used in PCA)

I σi =
√
λi are singular values.

I Redundant dimensions are diagonal 0

I Not necessarily square, though extra column or row all 0



SVD: singular vectors

(
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34

)
=
(

u11 u12 u13
u21 u22 u23
u31 u32 u33

)( σ11 0 0 0
0 σ22 0 0
0 0 σ33 0

)(
v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

)

Xm×n = Um×mΣm×n (Vn×n)T (6)

I v̂i is n × 1 unit eigenvector for the eigenvalue λi .
I V = [v̂1, · · · , v̂r , v̂r+1, · · · , v̂n]

I [v̂1, · · · , v̂r ] is orthogonal
I v̂j , r < j ≤ n orthonormal “fillers”

I ûi is the m × 1 vector defined by ûi = 1
σi Xv̂i

I U = [û1, · · · , ûr , ûr+1, · · · , ûn]
I similarly “filled out” with m − r orthonormal vectors

I U and V hold left and right singular vectors of X



Interpreting SVD for TDM

Xt×d = Tt×tΣt×d (Dd×d)T (7)

I Each SV relates to a “semantic dimension” (“topic”)

I Σ gives importance of topic

I T a change of basis op, shifting terms into semantic space:

TTX = ΣDT (8)

I ΣDT are documents in semantic space

I DT change of basis op, shifting terms into semantic space:

DTXT = ΣTT (9)

(and ΣDT are the terms projected)

I T relates terms to topics; value gives strength. Interpretation
of negative values unclear.

I D relates docs to topics



Dimensionality reduction in SVD

I The {σ1, · · · , σr} values on the diagonal of Σ are ordered by
decreasing “importance” of the corresponding dimension

I We can reduce dimensionality to only top k concepts by
setting {σk+1, · · · , σr} to 0.

I This gives reduced representation:

Xt×d ≈ XKt×d = TKt×kΣKk×k (DKd×k)T (10)

I ΣKDK
T (k × d) represents docs (cols) in k-d latent space

I ΣKTK
T (k × t) represents terms (cols) in k-d latent space

I TK, DK retain term–topic, doc–topic relations for top k topics



Latent Semantic Analysis

X ≈ TKΣKDK
T (11)

I Rank-lowering SVD on the TDM is used in the cluster of
related techniques known as Latent Semantic Analysis

I The “big claim” for LSA that this captures the “semantic
structure” of the collection

I Matches by “topic”, not term

I Automatically expands term into underlying topic

I Allows semantically related documents (queries) to match,
even if different terms used

I (Also referred to as “Latent Semantic Indexing”, or LSI)



Document comparison

I ZK = ΣKDK
T represents docs (cols) in semantic space

I Documents di and dj can be compared using cosine distance
on i and j columns of ZK

I Similar to comparison on TDM, except:
I Compares by “concepts” (useful for short documents, e.g.

sentences)
I Dense, k-d representation, rather than sparse t-d

I Suits vector hardware, e.g. GPU

I Clustering can also be done in semantic space
I Again, faster due to short, dense vectors
I (though doing the SVD itself can be slow!)



Term comparison

I YK = ΣKTK
T represents terms (cols) in semantic space

I Terms ti and tj can be compared as cosine distance on i and j
columns of YK.

I And clustering can be done (as with docs)

I Also, ZK and YK are in same k-d space

I So we can directly compare terms with documents (though
what this precisely means...)



Searches in LSA space

I Search for a query q similar in LSA space to TDM space

I treat q as doc, calculate cosine with true docs in DK

I But q must first be converted into the k-dim form

I DK calculable as:

DK = XTTKΣK
−1 (12)

I Therefore qK calculated as

qK = qTKΣK
−1 (13)

I Semantic space performs automatic (global) query expansion
I Note: practicalities of query evaluation change, because:

I Even short queries have many “concepts”
I Docvecs no longer large and sparse, but short and dense



Folding new documents into space

I Recalculating full SVD when new documents added expensive
I (though there are now incremental algorithms available)

I But new documents can be “folded in” in same way as queries

I That is, calculate their k-d representation as dK = dTKΣK
−1

I Then add dK as new row to DK

I Folded-in documents, however, did not contribute to semantic
decomposition

I As more are added, representativeness of decomposition
declines

I Particularly if new documents are significantly different (e.g.
represent different concepts) from old ones



Latent-SVD as semantic tool

I Concept of “folding” alerts that not all documents need to be
included in SVD

I Provided coverage of co-occurrences is adequate
I For instance, could sample documents

I though this will miss rarer co-occurences (even though this
may be significant)

I One can view LSA-SVD not as index, but as semantic
transformation tool



Topic analysis

Xt×d = TKt×kΣKk×k (DKd×k)T (14)

I Left singular vectors TK map between k terms and “semantic
dimensions” (topics)

I Then column k of TK “describes” topic by giving strength of
association with each term

I Interpretation of negative weights unclear
I Many terms have some non-zero association with each topic,

though most are not “significant”



Topic analysis example

Tpc Terms Labels

0 iraq, percent, bank, rate, trad, shar, . . . ??Overall
1 iraq, kurd, saddam, missil, attack, baghdad, . . . Iraq
2 net, profit, loss, shar, incom, tax, dividend, . . . Financials
3 bank, govern, minist, israel, elect . . . ?Israel election
4 ton, wheat, oil, chin, trad . . . ?Resources
5 shar, stock, point, index, clos . . . Sharemarket

I Took LYRL-30k collection.

I Performed k = 100 LSA analysis using gensim toolkit
(needed 88 seconds on my laptop)

I Top positive terms for top 6 topics given above, with possible
labels (that I came up with)

I What do you think of these topics?



Topic analysis by documents

I Right singular vectors TK map between topics and documents

I (though these are not so easy to get out of gensim)

I Could in principle tell us what a document was “about”

I As with terms, one document can be associated with many
topics



LSA: computational complexity

Xl×d = Tt×tΣt×d (Dd×d)T (15)

I Time complexity of full SVD is O(min{t2d , td2}) (ouch!)2

I For reduced dimension k , this can be reduced3 to O(tdk)
I For sparse matrices (and the TDM is sparse) and

(approximate) incremental methods, faster still
I e.g. gensim claims4 O(duk + tk2), where u is the average

number of words (terms?) per document. I.e. ≈ O(z), where
z is the number of postings in collection (non-zero cells in
TDM).

NOTE: Computational complexity of LSA (equiv.: low-rank or thin
SVD on sparse matrices) not well documented; would make good
final project for someone with strong matrix algebra

2Holmes, Gray, Isbell, “Fast SVD”, 2007.
3Brand, “Fast Low-Rank Modifications of the Thin SVD”, 2006
4http://bit.ly/1kZuEU0

http://bit.ly/1kZuEU0


LSA in practice

I LSA widely used, particularly in industry and in non-core CS
tasks (e.g. automatic marking of student essays)

I Has not been widely adopted in “core” IR:
I SVD was too compute intensive (still is for large corpora)
I Pseudo-relevance feedback techniques (e.g. Rocchio) and

other “local” query expansion techniques work as well or better
I Inability to do exact term matching a drawback

I LSA may be useful as component in larger system (e.g. for
global expansion, topic analysis), especially if built on sample
to reduce computation



Topic modelling

I Through the left and right singular vectors, LSA provides a
form of topic modelling (viz. identification of semantic
concepts to which terms and documents are co-clustered)

I Has been criticism of the (lack of) theoretical basis on which
LSA topics stand

I Also difficulty of interpreting the term–topic association scores

I Recent attention has turned to probabilistic topic models



Looking back and forward

Back: SVD

I PCA shifts and rotates TDM to align
dimensions along term covariances

I SVD splits X into UΣV

I We can reduce from full rank r to
k-dimensional space by dropping
smaller singular values in Σ

I In LSA, the SVD is seen as mapping
from “terms” to “concepts”

I Reduction to k dimensions extracts k
“key concepts”



Looking back and forward

Back
LSA

I LSA uses reduced-rank SVD to project
TDM into “semantic space”

I Reduced dimensions make clustering
faster

I Term co-association in topics provides
term expansions (particularly for
queries or very short documents)

I LSA provides a form of topic modelling



Looking back and forward

Forward

I Probablistic LSA and LDA (week after
next) provide a probabilistic approach
to extracting concepts from TDM
space

I Next week, will look at geometric
approaches to text classification



Further reading

I Jonathon Shlens, “A Tutorial on Principal Component Analysis”5

(2005 (?)). Also discusses singular value decomposition.

I Deerwester, Dumais, Furnas, Landauer, and Harshman, “Indexing
by Latent Semantic Analysis”, JASIST, 1990.

I Berry, Dumais, and O’Brien, “Using Linear Algebra for Intelligent
Information Retrieval”, SIAM, 1995.

I Chapter 18, “Matrix decompositions and latent semantic
indexing”6, of Manning, Raghavan, and Schutze, Introduction to
Information Retrieval, CUP, 2009.

5http://www.cs.princeton.edu/picasso/mats/

PCA-Tutorial-Intuition_jp.pdf
6http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf
http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf


Appendix: Dimensionality reduction example

( t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

) (
σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 0 0

)  d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35
d41 d42 d43 d44 d45
d51 d52 d53 d54 d55


X4×5 = T4×4 Σ4×5 (D5×5)T

I t = 4 terms, d = 5 documents
I Here, rank r = 3

I r < t, implies term made redundant by others

I d5, d4, and t4 can be dropped, and Σ shrunk to r × r = 3× 3

I Dimensionality can be lower from r = 3 to k = 2 by setting
lowest-weight SV σ3 to 0

I And then d3 and t3 can be dropped, and Σ shrunk to
k × k = 2× 2



Appendix: Dimensionality reduction example

( t11 t12 t13
t21 t22 t23
t31 t32 t33
t41 t42 t43

) (
σ1 0 0
0 σ2 0
0 0 σ3

) (
d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35

)
TR4×3 ΣR3×3 (DR5×3)T

I t = 4 terms, d = 5 documents
I Here, rank r = 3

I r < t, implies term made redundant by others

I d5, d4, and t4 can be dropped, and Σ shrunk to r × r = 3× 3

I Dimensionality can be lower from r = 3 to k = 2 by setting
lowest-weight SV σ3 to 0

I And then d3 and t3 can be dropped, and Σ shrunk to
k × k = 2× 2



Appendix: Dimensionality reduction example

( t11 t12 t13
t21 t22 t23
t31 t32 t33
t41 t42 t43

) (
σ1 0 0
0 σ2 0
0 0 0

) (
d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35

)
TR4×3 ΣR3×3 (DR5×3)T

I t = 4 terms, d = 5 documents
I Here, rank r = 3

I r < t, implies term made redundant by others

I d5, d4, and t4 can be dropped, and Σ shrunk to r × r = 3× 3

I Dimensionality can be lower from r = 3 to k = 2 by setting
lowest-weight SV σ3 to 0

I And then d3 and t3 can be dropped, and Σ shrunk to
k × k = 2× 2



Appendix: Dimensionality reduction example

( t11 t12
t21 t22
t31 t32
t41 t42

) (
σ1 0
0 σ2

) (
d11 d12 d13 d14 d15
d21 d22 d23 d24 d25

)
TK4×2 ΣK2×2 (DK5×2)T

I t = 4 terms, d = 5 documents
I Here, rank r = 3

I r < t, implies term made redundant by others

I d5, d4, and t4 can be dropped, and Σ shrunk to r × r = 3× 3

I Dimensionality can be lower from r = 3 to k = 2 by setting
lowest-weight SV σ3 to 0

I And then d3 and t3 can be dropped, and Σ shrunk to
k × k = 2× 2


	Matrix analysis and decomposition
	Matrix algebra
	Eigenvalues, eigenvectors, and PCA
	SVD

	Latent semantic analysis
	LSA for document similarity and clustering

	Applications of LSA
	Comparison and clustering
	Searching LSA (LSI)
	Summary

	Appendix
	Appendix: dimensionality reduction example


