Lecture 15: Logistic Regression

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 15

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What we'll learn in this lecture

- Model-based regression and classification
- Logistic regression as a probabilistic classifier

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model-based regression and classification

- NB instance of model-based probabilistic classification
- In more general form, expressible as:

$$P(c|\vec{x}) = f(\vec{x}, \vec{\beta}) \tag{1}$$

where:

$$\begin{array}{l} f() \text{ is some function} \\ \vec{x} \text{ vector of feature scores, } \{x_1, \ldots, x_n\} \\ \vec{\beta} \text{ vector of feature weights, } \{\beta_0, \beta_1, \ldots, \beta_n\} \\ \beta_0 \text{ is for intercept} \end{array}$$

More specifically:

$$P(c|\vec{x}) = f(\{\beta_0, \beta_1 x_1, \dots, \beta_n x_n\})$$
(2)

• Idea is then to learn "best" $\vec{\beta}$

Linear model

$$P(c|\vec{x})) = f(\vec{x}, \vec{\beta}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n \tag{3}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

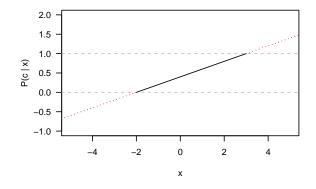
- Might try simple linear model
- ► Fitted with ordinary least squares (≈ straight line [hyperplane] of best fit)

Linear model

$$P(c|\vec{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n \tag{4}$$

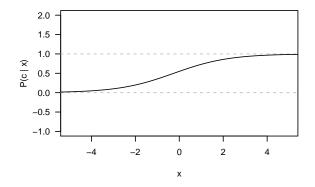
・ロト ・聞ト ・ヨト ・ヨト

æ



- But probabilities bound between 0 and 1
- Meaning of probabilities outside range unclear
- Artificial to bound $\vec{\beta}$ to this range

Sigmoid model



- ▶ What we want is response variable (y, P(c|x)) bounded between [0, 1]
- But predictor variable, x_i, unbounded (at least by model)
- General shape of such a function is a sigmoid or "S-shaped curve"

Log-linear models

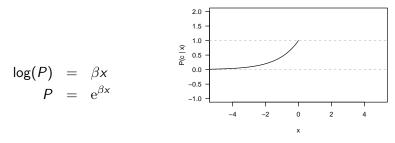
$$P(c|\vec{x}) = \beta_0 \cdot \beta_1^{x_1} \cdot \ldots \cdot \beta_n^{x_n}$$
(5)

$$\log P(c|\vec{x}) = \log \beta_0 + x_1 \log \beta_1 + \ldots + x_n \log \beta_n \qquad (6)$$

- Natural (see NB) to express total probability
- as (weighted) product of individual probabilities
- exponentiated by frequency of events
- Taking log of this gives log-linear model
- Directly fit $\log \beta_i$, so can write as:

$$\log P(c|\vec{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n \tag{7}$$

 $\log(P) = \beta x$



But curve has unbalanced shape:

- Fine granularity of response as $P \rightarrow 0$
- Coarse response as $P \rightarrow 1$

Balanced in P

- Want behaviour that is same for high P and low P
- This is provided by log odds or logit:

$$logit(P) = log \frac{P}{1-P}$$
(8)
$$logit(1-P) = -logit(P)$$
(9)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Logistic regression

Putting this together, we get:

$$logit P(c|\vec{x}) = log \frac{P(c|\vec{x})}{1 - P(c|\vec{x})} = \beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n (10)$$
$$P(c|\vec{x}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \ldots + \beta_n x_n)}} (11)$$

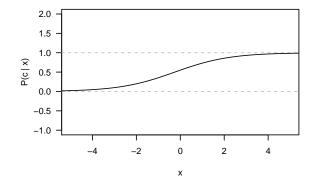
- Expression on rhs of (11) known as logistic function
- So this is called logistic regression

Logistic function

$$y = \frac{1}{1 + e^{-(\beta_0 + \beta_x)}}$$
(12)

< /₽ > < ∋

문 🛌 문



- And, happily, the logistic function sigmoid
- (Indeed, is archetypal sigmoid function)

Fitting the model

Doc	Terms (\mathbf{X}_d)				Class (y)		
1	<i>X</i> ₁₁	<i>X</i> ₁₂	•••	X_{1t}	•••	X_{1n}	1
2	X_{21}	X_{22}	•••	X_{2t}	•••	X_{2n}	0
:							:
d	X_{d1}	X_{d2}	• • •	X _{dt}		X_{dn}	0
:							:
m	X_{m1}	X_{m2}	•••	X _{mt}	•••	X _{mn}	1

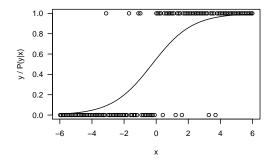
- Training data feature vectors **X** with labels \vec{y}
- Labels for binary classification: member, or non-member
- Have to determine vector $\vec{\beta}$ such that:

$$P(y_d|matX_d) = \left(1 + \exp(-(\beta_0 + \sum_i \beta_i x_i))\right)^{-1}$$
(13)

"best fits" data

- Free to use any values for X_{dt}
 - Length-normalized TF*IDF one choice

Data and model



- The data being fitted are binary
- The fitting value is a probability, $P(y_d = c | \mathbf{X}_d)$
- We're fitting a curve of Bernoulli (one-event binomial) vars
- ... that best fits the observed data

Maximum likelihood estimation

For weights $\vec{\beta}$, the *likelihood* of the data **X** and labels \vec{y} given that model is:

$$L(\vec{\beta}) = \prod_{I:y_l=1} P(\mathbf{X}_l) \prod_{I:y_l=0} [1 - P(\mathbf{X}_l)]$$
(14)

For logistic model:

$$P(\mathbf{X}_{l}) = \frac{1}{1 + e^{-(\beta_{0} + \sum_{i} \beta_{i} X_{li})}}$$
(15)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We have to find $\vec{\beta}$ that maximizes (14)
- This is done by a computer using iterative methods

Logistic regression in practice

	Collection		
Classifier	hotmail	trec-2005	trec-2006
NB	0.2479	0.8196	0.8017
NB-IR	0.5561	0.9207	0.9521
Log. Reg	0.4877	0.9461	0.9384
SVM	0.4830	0.9477	0.9754

Table : Normalized AUC on spam filtering; from Kotz and Yih, "Raising the Baseline for High-Precision Text Classifiers", KDD 2007. NB-IR is NB with IR features (length-normalized TF*IDF)

- Logistic regression for text classification generally "almost, but not quite" as good as SVM
- ▶ (Note, on this task, NB with LN-TF*IDF does well
- ... and see paper for variants that do even better)
- On our GCAT 1000/1000 data, with length-normalized TF*IDF features, LR got accuracy 93%, F1 88%

Interpreting logistic regression: weights

- β_i for term *i* gives importance of that term in model
 - (but interpretation subject to term dependencies)
- For topic GCAT (Govt/Social), highest-weight terms were:

Posi	tive	Negative		
Term	Weight	Term	Weight	
sunday	0.869	shar	-0.951	
SOCC	0.643	newsroom	-0.926	
minist	0.635	trad	-0.669	
eu	0.629	stock	-0.593	
saturday	0.599	compan	-0.580	

Interpreting logistic regression: probabilites

- Logistic regression directly gives reasonable probabilities
- (given constraint of model)
- ► For GCAT 1000/1000

P([c)	
\geq	<	% positive
0.00	0.05	2.4%
0.05	0.10	14.8%
0.10	0.30	26.9%
0.30	0.50	48.9%
0.50	0.70	74.2%
0.70	0.90	89.7%
0.90	0.95	93.8%
0.95	1.00	99.2%

Looking back and forward

Back

- Model as $P(c|\vec{x}) = f(\beta_1 x_1, \cdots, \beta_n x_n)$ where
 - x_i is feature score (differs for each document)
 - β_i is feature weight (common across topics)
- Learn weights that best "fit" training data
- Free to use whatever values for x₁ (e.g. normalized TF*IDF)
- ▶ But probabilities bound between [0,1]

Looking back and forward

Back

- Sigmoid function maps unbounded feature scores to bounded probabilities
- Log odds gives even treatment to high, low probabilities
- Logistic model ties these together
- ► Learn weights \$\vec{\beta}\$ using maximum likelihood
- Effectiveness "almost, but not quite" as good as SVM

 But gives us feature weights, reasonable probabilities

Looking back and forward

Forward

 Next lecture: advanced topics in classification

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ▶ e.g. active learning
- Later: topic modelling

Further reading

- Klienbaum and Klein, "Logistic Regression", 3rd edn (2010) (detailed, gradual introduction to logistic regression)
- Hastie, Tibshirani, and Friedman, "The ELements of Statistical Learning" (2001) (briefer, more technical description)