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What we’ll learn in this lecture

I Iterative training of classifier

I Calculation of learning curve to measure iterative quality

I Yield curve to measure ranking quality

I Cross-validation for testing with training data

I Active learning to select better training examples



Training up a classifier

I To date, assumed all training examples available at once
I However, classifiers often trained iteratively:

I Select, label, add training examples
I Check classifier effectiveness
I Repeat if not effective enough

I Training examples often require human judgment
I Can be expensive to collect

I Only want to train as many examples as required



Learning curve
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I The bigger the training set, the better the classifier

I As training examples added, classifier effectiveness improves

I But some maximum limit on effectiveness

I Due to inherent ambiguity in topic, data



Learning curve
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I Different training sets lead to same plateau

I But reach there at different rates

I Would like to pick training examples to reach there faster



Variance in learning rate between topics
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I Some topics are conceptually harder
I All other things equal, learning rate follows proption positive:

I The greater the proportion positive (< 50%)
I . . . the faster the learning



Classification as ranking (pseudo-regression)

I Most binary classifiers can give us a strength of prediction
score

I This is pseudo-regression (binary label in, real-value out)
I Quality of ranking of independent interest:

I Binarization step can be done separately
I Ranking may be processed
I User may have different precision/recall tradeoffs



Yield curve
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I Plotting recall against depth gives yield curve

I Indicates how far down ranking one must go to achieve give
yield



Yield vs. learning curves

I NOTE: get clear in your mind difference between learning and
yield curves:

I A learning curve shows whole-classification effectiveness for
increasing training sizes

I A yield curve shows recall for different cutoff depths, for the
one training size



Yield curve with increasing training
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I View as yield curve, increasing training aims to push curve
“up and to left”



Real-valued metrics on rankings

Ranking quality also measurable by various real-valued metrics:

I Area under curve (for whatever curve)

I Average precision

I Any other binary IR ranking metric



Testing on training

I Effectiveness experimentally measured by:
I Training on a training set
I Evaluating against a (separate) test set

I Testing directly on the training data exaggerates effectiveness
I Model has been fit to training data
I Will perform better on training data than new data

I Though testing on training can give indication of
“separability” of training data

I However, sometimes we want to reuse training set for testing:
I We have limited labelled data
I We are trying to tune parameters during an actual run

I One technique for reusing training data for testing is
cross-validation



Cross-validation

Figure : 5-fold cross-validation

I Break training set into n folds
I Successively:

I Train on n − 1 folds
I Test on n’th fold

I Aggregate scores (confusion matrices) across four folds



Limitations to cross-fold validation

I Only predicts performance on unlabelled examples if training
examples a random sample from unlabelled examples

I n-fold CV predicts effectiveness of classifier with (n − 1)T/n
training examples, not all T training examples

I Tricky to get an aggregate ranking from cross-validation
I Because pseudo-regressed scores for different folds come from

different models



Active learning

I Some documents are better training examples than others

I Trying to select good training documents is active learning

I (Selecting documents at random is passive learning :)

I We can get the machine learner itself to help us find good
training documents



Active learning by uncertainty sampling

I Ideally, like to select training documents classifier gets wrong

I Little gain in labelling training examples classifier has right

I We don’t know what’s wrong, right until we’ve labelled them

I Instead, select documents classifier is “most uncertain” about



Maximum uncertainty in probabilitic models
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H(p) = −p log2(p) − (1 − p) log2(1 − p) (1)

In probabilistic models (e.g. Logistic Regression)

I Most uncertain documents are those with P(r) ≈ 0.5
I Can formalize as entropy H(P(r))

I Maximized at P(r) = 0.5 (see figure above)



Maximum uncertainty in partitioning models

In partitioning models (e.g. SVM)

I Most uncertain are closest to separating hyper-plane

I Closest elements tend to have biggest impact on hyperplane



Uncertainty through CV

Another way of measuring uncertainty is through cross-validation:

I Build n models each with (n − 1)/n) of training data

I Classify unlabelled examples with each fold-model

I Select example(s) on which fold-models most disagree

Known as “query by commitee”.



Effectivenss of active learning
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I Active learning typically leads to steeper learning curves
I (i.e. faster learning)
I However, there can be “degenerate cases”, where active

learning gets “stuck” in unproductive part of space



Active learning practicalities

I Theoretical work often assumes only one example chosen at
each active iteration

I Active learning expensive
I Must run classifier over all unlabelled examples at each

iteration
I Unlabelled examples can be very large set
I Often inefficient to have human labeller look at only single

instance at each iteration

I In practice, typically label several (perhaps tens of) examples
per iteration



Selecting multiple examples

I Simple approach is to pick m most uncertain examples
I E.g. m examples with probability of relevance closest to 50%
I or m examples closest to separating hyper-plane

I However, examples close to given “point” in space more likely
to be similar than examples further away in space

I Inefficient to label many similar examples

I Quick fix is to sample from larger set of uncertain documents



Diversifying active example selection

I Two criteria to satisfy when selecting examples:
I Select diverse examples
I Avoid outliers

I Documents that are dissimilar to all others give little help

I Diversity achievable by clustering, select documents from
different clusters

I Outliers avoided by outlier detection (finding documents that
are far from other documents)



Looking back and forward
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Looking back and forward

Back

I Labelling data frequently expensive

I Classifiers often iteratively trained
until desired effectiveness achieved

I Progress in training measured by
learning curve

I Cross validation also usable for
measuring effectiveness on training
data

I Binary classifiers may produce rankings

I Effectiveness of ranking measurable by
yield curve

I As well as standard IR rank metrics
like AP



Looking back and forward

Back

I Some training examples more useful
than others

I Active learning seeks to pick most
useful training examples at each
iteration

I Usefulness measurable by uncertainty;
either:

I Documents closest to “decision
boundary”

I Documents which committee of
(CV) classifiers disagree on

I Diversity, non-outliers important
criteria for multiple selection active
learning



Looking back and forward

Forward

I Topic modelling



Further reading

I Lewis and Gale, “A sequential algorithm for training text
classifiers”, SIGIR, 1994 (early work on active learning and
uncertainty sampling)

I Xu, Akella, and Zhang, “Incorporating diversity and density in
active learning for relevance feedback”, ECIR, 2007 (select diverse,
non-outlier examples in multiple-document active learning)

I Tong and Keller, “Support vector machine active learning with
applications to text classification”, JMLR 2002 (active learning
techniques specific to support vector machines)

I Liere and Tadepalli, “Active learning with committees for text
categorization”, AAAI 1997 (query by commitee for active learning
selection)
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