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LDA diagram and process

1. Choose term probabilities for each topic: Φi ∼ D(β)

2. Choose topic probabilities for each document: Θd ∼ D(α)

3. Choose the topic of each token: zdn ∼M(θd)

4. Choose the token: wdn ∼M(φzdn)



The multinomial distribution

I Let X be a multinomial random variable

I A “realization” of X takes on k distinct values,
{X1, . . . ,Xi , . . . ,Xk}

I X has k + 1 parameters:
I n > 0, the number of “trials”
I {p1, . . . , pk}, the probability of each distinct value at each trial

I 0 ≤ pi ≤ 1
I

∑k
i=1 pi = 1

I i.e. p is a probability distribution over k values

I Xj ∈ {0, 1, . . . , n}
I

∑
Xi

= n

I Intuition
I Roll a biased k-sided dice n times
I Count number of times each face turns up
I Xi is the number of times the i ’th face turns up

I There is a formula but we don’t need to worry about it!



The Dirichlet distribution

I Let ψ be a Dirichlet random variable
I A “realization” of ψ takes on k values, {ψk , . . . , ψi , . . . , ψk}

I 0 ≤ ψi ≤ k
I

∑k
i=1 ψi = 1

I i.e. a realization of ψ is itself a probability distribution

I ψ has k parameters, α = {α1, . . . , αk}, with αi > 0

I Let A =
∑
αi

I The expected value of ψi is αi/A (written E[ψi ] = αi/A)

I The greater A, the closer ψi is likely to be to αi/A

I A realization of ψ can give us the parameters {p1, . . . , pk} for
a multinomial variable X

I If αi = αj ∀i , j , we say that ψ is symmetric

I There is a formula but we don’t need to worry about it!



The probability equations of LDA

P(w1, . . . ,wn|α, β) =
n∏

i=1

P(wi |α, β)

P(wi |α, β) =

∫
P(wi |α, φ)P(φ|β)dβ

P(wi |α, φ) =

∫
P(wi , θi |α, φ) dθi

P(wi , θi |α, φ) = P(wi |θi , φ)P(θi |α)

P(wi |θi , φ) =
m∏
j=1

P(wi ,j |θi , φ)ci,j

P(wi ,j |θi , φ) =
K∑

k=1

P(zi ,j = k |θi )P(wi ,j |φk)

K number of topics

wi bag of words (terms and fd ,t) for document i



The components: θi

I θi is the multinomial distribution over topics for document i

I There are K topics (where K is semi-arbitrarily chosen by us)

I Therefore θi has K parameters

I θi ,k is the probability that an arbitrary word in document i will
belong to topic k

I α is the prior to θ
I That is, the probabilities {θi,1, . . . , θi,K} are a “realization” of

a Dirichlet random variable with parameters {α1, . . . , αK}
I The same Dirichlet RV is prior to all θi
I α is asymmetric, meaning we allow certain topics to be a

priori more likely than others



The components: φk

I φk is the multinomial distribution over terms for topic k

I There are m = |V | terms in the vocabulary

I Therefore φk has m parameters

I φk,i is the probability that anarbitrary word produced by topic
k will be Vi

I β is the Dirichlet prior to φ
I That is, the probabilities {φi,1, . . . , φi,m} are a “realization” of

a Dirichlet random variable with parameters {β1, . . . , βm}
I β is symmetric, meaning that all words are a priori as likely

for each topic
I This does not mean that

I the posterior distribution φk over terms for topics will be flat
I each φk will give the same distribution over terms



Symmetric and asymmetric priors

Why is β symmetric, but α asymmetric? Following Wallach et al.,
2009

I Asymmetric α leads to more stable results
I In particular, models are more stable to choice of number of

topics K
I Think back to LSI, where some topics are “more important”

than others
I And model for topic k ≤ K is independent of choice of K

I However, asymmetric β does not improve stability

I Asymmetric requires more parameters to fit than symmetric

I Therefore, only employ asymmetric priors if they provide some
advantage

(In the full/pure Bayesian model, we apply yet another prior to α,
known as a gamma prior; in practice, this is approximated using
empirical methods.)



Deciphering the formulae: P(wi ,j |θi , φ)

P(wi ,j |θi , φ) =
K∑

k=1

P(zi ,j = k |θi )P(wi ,j |φk) (1)

I P(wi ,j) is the prob that an arbitrary term in doc i is the
term j

I We don’t care about the word position in the doc
I . . . a standard assumption of the unigram term model

I φk is the probability distribution over terms for topic k

I Therefore, P(wi ,j |φk) is just P(j |φk)

I zi ,j is the topic that generates term j of document i

I P(zi ,j = k|θi ) is the probability that this topic is k

I θi is the prob dist over topics for document i

I Therefore, P(zi ,j = k |θi ) is just P(k|θi )



Deciphering the formulae: P(wi ,j |θi , φ) (cont.)

P(wi ,j = t|θi , φ) =
K∑

k=1

P(zi ,j = k |θi )P(wi ,j = t|φk) (2)

I P(zi ,j = k|θi )P(wi ,j |φk) is the probability that the term is j
and the topic is k

I The term must come from exactly one topic

I Therefore, we sum these probabilities over all K topics
I And this gives us P(wi ,j |θi , φ)

I That is, the probability that an arbitrary term in doc i is j



Deciphering the formulae: P(wi |θi , φ)

P(wi |θi , φ) =
m∏
j=1

P(wi ,j |θi , φ)ci,j (3)

I ci ,j is the number of times that term j occurs in document i

I We assume (unigram model) that these occurrences are
independent

I Therefore the probability that term j occurs ci ,j times is the
probability of each occurrence, raised to the ci ,j ’th power

I We also assume (unigram model) that the occurrence of
different terms is independent

I Therefore, the probability of the bag-of-words representation
wi of document i is just the product of all the individual
probabilities



Deciphering the formulae: P(wi , θi |α, φ)

P(wi , θi |α, φ) = P(wi |θi , φ)P(θi |α) (4)

I P(wi , θi |α, φ) is the (joint) probability of observing:
I the bag-of-words representation wi of document i
I document i ’s distribution over topics θi

I We have previously figured out P(wi |θi , φ)

I The multinomial θi is an “observation” of the Dirichlet RV α

I So P(θi |α) is the prob of the multinomial θi given the prior α
I There is a formula for this (that we won’t worry about!)

I We assume conditional indepence of wi and θi
I So their joint probability is just the product of their individual

(marginal) probabilities



Deciphering the formulae: P(wi |α, φ)

P(wi |α, φ) =

∫
P(wi , θi |α, φ)dθi (5)

I P(wi |α, φ) is
I the probability of the bag-of-words document i
I given our prior for document distributions over topics α
I and the (list of k) topic distributions over words φ

I θi is the document distribution over topics for doc i

I We already have P(wi , θi |α, φ) (from previous step)
I We can “remove” θi by integrating over all θi ’s

I If you’re unfamiliar with calculus, think of the integral as
analogous to a sum over a continuous variable



Deciphering formulae: P(wi |α, β)

P(wi |α, β) =

∫
P(wi |α, φ)P(φ|β)dβ (6)

I β is our (symmetric) prior for topic distributions over terms

I We’ve already calculated P(wi |α, φ)

I We can write:

P(wi |α, β) =

∫
P(wi |α, β, φ)P(φ|α, β)dβ (7)

by the law of total probability
I Analogous to:

P(A) =
∑
b

P(A|B = b)P(B = b) (8)

I wi is independent of β, given θ, and φ is independent of α

I Therefore, Equation 7 simplifies to Equation 6



Deciphering the formulae: P(w1, . . . ,wn|α, β)

P(w1, . . . ,wn|α, β) =
n∏

i=1

P(wi |α, β) (9)

I We assume that documents are probabilistically independent

I Therefore the probability of generating a set of documents
{w1, . . . ,wn}

I . . . is the product of the probability of generating each
individual document



The probability equations of LDA

P(w1, . . . ,wn|α, β) =
n∏

i=1

P(wi |α, β)

P(wi |α, β) =

∫
P(wi |α, φ)P(φ|β)dβ

P(wi |α, φ) =

∫
P(wi , θi |α, φ) dθi

P(wi , θi |α, φ) = P(wi |θi , φ)P(θi |α)

P(wi |θi , φ) =
m∏
j=1

P(wi ,j |θi , φ)ci,j

P(wi ,j |θi , φ) =
K∑

k=1

P(zi ,j = k |θi )P(wi ,j |φk)



Solving LDA

Directly solving LDA would involve finding parameters that
maximize the empirical likelihood L of the observed documents
{w1, . . . ,wn}:

L =
m∏
j=1

n∏
i=1

P(wi ,j |zi ,j , φ)P(zi ,j |θi )P(θd |α)P(φ|β) (10)

I Note: parameters found are not α, β

I Rather, they are parameters to φ, θ

These parameters cannot be directly solved as zi ,j not observed.

Instead, an approximation method must be used.



Gibbs sampling

A common approach is to use Gibbs sampling

I A Monte-Carlo Markov Chain method from statistical physics
I “Monte Carlo” means based on random simulation
I “Markov Chain” describes a random process in which each

state depends only on the previous state

I Basic idea is in a complex model with many dependent
variables:

I Sequentially sample each variable, dependent upon state of all
other variables

I Observe averages over very large number of samples as
probability estimates



Collapsed Gibbs sampling
Collapsed Gibbs method developed by Griffiths and Steyvers, 2006:

I Marginalize out θ, φ

I Instead, estimate P(z|w) (that is, P(zi ,j |wi ,j) for all i , j)

I They derive the approximation:

P(zi ,j |z̄i ,j) ∝ (Ni ,z + αz)(Nz,j + β) (11)

where

z̄i ,j all other topic assignments to words
Ni ,z number of times topic z has been assigned to

words in document i
Nz,j number of times word j has been assigned to

topic z

I Iterate many, many times

I Count how many times each word assigned to each topic

I Normalize these counts to estimate θi , φk



Further reading

I Blei, Ng, and Jordan, “Latent Dirichlet Allocation”, JMLR, 2003

I Crain, Zhou, Yang, and Zha, “Dimensionality Reduction and Topic
Modeling”, Chapter 5 of Aggarwal and Zhai (ed.), Mining Text
Data, 2012 (brief summary of Gibbs sampling).

I Sun, Deng, and Han, “Probabilistic Models for Text Mining”,
Chapter 8 of Aggarwal and Zhai (ed.), Mining Text Data, 2012
(gives P(w1, . . . ,wn|α, β)).

I Griffiths and Steyvers, “Finding Scientific Topics”, PNAS, 2004
(collapsed Gibbs sampling for solving LDA)
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