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LDA diagram and process

OO

T8,

Choose term probabilities for each topic: ®; ~ D(3)
Choose topic probabilities for each document: ©4 ~ D(«)
Choose the topic of each token: zg, ~ M(04)

Choose the token: wgp, ~ M(¢5, )

A



The multinomial distribution

v

Let X be a multinomial random variable

v

A ‘“realization” of X takes on k distinct values,
{ X1,y Xiy oo, Xic}
X has k + 1 parameters:

» n > 0, the number of “trials”

» {p1,..., Pk} the probability of each distinct value at each trial
»0<p<1
> Zf:l pi = 1
> i.e. pis a probability distribution over k values

X;€{0,1,...,n}
> in:n

v

v

» Intuition

» Roll a biased k-sided dice n times

» Count number of times each face turns up

» X; is the number of times the i'th face turns up
>

There is a formula but we don't need to worry about it!



The Dirichlet distribution

> Let ¢ be a Dirichlet random variable

» A “realization” of 1) takes on k values, {¢k,...,¥j, ..., Uk}
» 0<y; <k
> Yiavi=1
> i.e. a realization of ¢ is itself a probability distribution

» 1) has k parameters, « = {a1,...,ak}, with a; > 0

> Let A= Za,-

» The expected value of ¢; is a;j/A (written E[¢);] = ;i /A)

v

The greater A, the closer 1); is likely to be to a;/A

A realization of ¢ can give us the parameters {pi, ..., px} for
a multinomial variable X

v

v

If a; = Vi, j, we say that ¢ is symmetric

v

There is a formula but we don’t need to worry about it!



The probability equations of LDA

P(wi, ... ,wola, 8) = ] P(wila, )
i=1

Pawla,8) = [ P(wia.0)P(e]9)ds
Pawla,0) = [ Plwibila.0)ds
P(w;,0ila, ) = P(w;l0;, ¢)P(0i|c)
P(wilj,¢) = ﬁP(WiJ\9i7¢)C"”'
j7<1
P(wijloi,¢) = > Plzij = k|0)P(wij|é)

N
L

K number of topics

w; bag of words (terms and fy ;) for document /



The components: 6;

> 0; is the multinomial distribution over topics for document i
» There are K topics (where K is semi-arbitrarily chosen by us)
> Therefore 0; has K parameters

> 0; « is the probability that an arbitrary word in document / will
belong to topic k
» « is the prior to 0
» That is, the probabilities {6;1,...,0; x} are a “realization” of
a Dirichlet random variable with parameters {aq, ..., ax}
» The same Dirichlet RV is prior to all §;

> « is asymmetric, meaning we allow certain topics to be a
priori more likely than others



The components: ¢,

> ¢ is the multinomial distribution over terms for topic k
» There are m = |V| terms in the vocabulary
> Therefore ¢, has m parameters
> ¢k,i is the probability that anarbitrary word produced by topic
k will be V;
» [ is the Dirichlet prior to ¢
» That is, the probabilities {¢;1,...,¢im} are a “realization” of
a Dirichlet random variable with parameters {531, ..., 8m}
» 3 is symmetric, meaning that all words are a priori as likely

for each topic
» This does not mean that

> the posterior distribution ¢« over terms for topics will be flat
> each ¢« will give the same distribution over terms



Symmetric and asymmetric priors

Why is 8 symmetric, but a asymmetric? Following Wallach et al.,
2009

> Asymmetric « leads to more stable results

v

In particular, models are more stable to choice of number of
topics K
» Think back to LSI, where some topics are “more important”
than others
» And model for topic k < K is independent of choice of K

v

However, asymmetric 5 does not improve stability

v

Asymmetric requires more parameters to fit than symmetric

v

Therefore, only employ asymmetric priors if they provide some
advantage

(In the full/pure Bayesian model, we apply yet another prior to «,
known as a gamma prior; in practice, this is approximated using
empirical methods.)



Deciphering the formulae: P(w;;|0;, ¢)

K
WI,J|0H Z P Zl,j = k‘e (Wi,j‘gbk) (1)
k=1

» P(w;) is the prob that an arbitrary term in doc i is the
term j

» We don't care about the word position in the doc
» ...a standard assumption of the unigram term model

> ¢ is the probability distribution over terms for topic k
» Therefore, P(w; j|¢«) is just P(j|o«)

> Zz;; is the topic that generates term j of document i

» P(zjj = k|0;) is the probability that this topic is k

» 0; is the prob dist over topics for document /

> Therefore, P(z;j = k|0;) is just P(k|6;)



Deciphering the formulae: P(w;;|0;, ¢) (cont.)

K
P(wij = t|0i,¢) =Y P(zij = kl0)P(wij =tl¢r)  (2)
k=1

v

P(z;j = k|0;)P(w; j|¢k) is the probability that the term is j
and the topic is k

v

The term must come from exactly one topic

v

Therefore, we sum these probabilities over all K topics
And this gives us P(w; j|0;, ¢)
» That is, the probability that an arbitrary term in doc i is j

v



Deciphering the formulae: P(w;|0;, ¢)

P(w;|0;, ¢) = [ P(wi l0i, ) (3)
j=1

> ¢jj is the number of times that term j occurs in document i

» We assume (unigram model) that these occurrences are
independent

» Therefore the probability that term j occurs ¢;; times is the
probability of each occurrence, raised to the ¢; ;'th power

» We also assume (unigram model) that the occurrence of
different terms is independent

» Therefore, the probability of the bag-of-words representation
w; of document / is just the product of all the individual
probabilities



Deciphering the formulae: P(w;, 6;|a, ¢)

P(w;, 0ja, ¢) = P(w;|0;, ¢)P(8;]cr) (4)

v

P(wj,0i|a, @) is the (joint) probability of observing:
> the bag-of-words representation w; of document i
» document /'s distribution over topics 6;

v

We have previously figured out P(w;|6;, ¢)

v

The multinomial ; is an “observation” of the Dirichlet RV «
So P(6;|a) is the prob of the multinomial 6; given the prior «
» There is a formula for this (that we won't worry about!)

v

» We assume conditional indepence of w; and 6;

v

So their joint probability is just the product of their individual
(marginal) probabilities



Deciphering the formulae: P(w;|a, ¢)

P(wi|a,(l)):/P(W;,9;|Oé,¢)d9; (5)

v

P(Wi‘aa ¢) is
» the probability of the bag-of-words document i
» given our prior for document distributions over topics «
» and the (list of k) topic distributions over words ¢

v

0; is the document distribution over topics for doc i

v

We already have P(wj;, 0;|c, ¢) (from previous step)

v

We can “remove” 0; by integrating over all 6;’s

» If you're unfamiliar with calculus, think of the integral as
analogous to a sum over a continuous variable



Deciphering formulae: P(w;|a, ()

Hmmmz/ﬁmmwwwmm3 (6)

» [ is our (symmetric) prior for topic distributions over terms
» We've already calculated P(w;|a, ¢)

» We can write:

mwmmz/ﬁMMﬁ@WWmmw ()

by the law of total probability
» Analogous to:

P(A)=> P(A|B = b)P(B = b) (8)
b

» w; is independent of 3, given #, and ¢ is independent of «

> Therefore, Equation 7 simplifies to Equation 6



Deciphering the formulae: P(wy, ..., w,|a, )

n

P(wy,...,wpla, 3) :HP(W;|&,,B) (9)

i=1

> We assume that documents are probabilistically independent

» Therefore the probability of generating a set of documents
{wi,...,wp}

> ...is the product of the probability of generating each
individual document



The probability equations of LDA

P(wi, ..., wpl|a,

P(Wf’a7

P(W,‘|Oé,

P(W,’,G;|O&,

p)

p)

?)
?)

P(w;|0;, ¢)

P(w; |0, ¢)

H P(wila, §)

- /P wila, 6)P(6]8) d

/P w;, 0i|a, ¢

P(wil0;, ¢)P(6; Ia)

ﬁ P(w; j|0i, ¢)
j=1

K

Z (21 = kl0i)P(wij|ox)

k=



Solving LDA

Directly solving LDA would involve finding parameters that
maximize the empirical likelihood £ of the observed documents

{wi,...,wp}:

m n

£ =TT P(wijlzij. #)P(z:j16:)P(04l)P(6]8)  (10)

j=1i=1

» Note: parameters found are not «, 8

» Rather, they are parameters to ¢, 6

These parameters cannot be directly solved as z; ; not observed.

Instead, an approximation method must be used.



Gibbs sampling

A common approach is to use Gibbs sampling

» A Monte-Carlo Markov Chain method from statistical physics
» “Monte Carlo” means based on random simulation
» “Markov Chain"” describes a random process in which each
state depends only on the previous state

» Basic idea is in a complex model with many dependent
variables:
» Sequentially sample each variable, dependent upon state of all
other variables
» Observe averages over very large number of samples as
probability estimates



Collapsed Gibbs sampling
Collapsed Gibbs method developed by Griffiths and Steyvers, 2006:

» Marginalize out 6, ¢
> Instead, estimate P(z|w) (that is, P(z j|w; ) for all i, )

> They derive the approximation:
P(zij|zij) o< (Niz + az)(Nzj + B) (11)

where
z;; all other topic assignments to words
N; , number of times topic z has been assigned to
words in document |
N, ; number of times word j has been assigned to
topic z
> |terate many, many times
» Count how many times each word assigned to each topic

» Normalize these counts to estimate 6;, ¢



Further reading

> Blei, Ng, and Jordan, “Latent Dirichlet Allocation”, JMLR, 2003

» Crain, Zhou, Yang, and Zha, “Dimensionality Reduction and Topic
Modeling”, Chapter 5 of Aggarwal and Zhai (ed.), Mining Text
Data, 2012 (brief summary of Gibbs sampling).

» Sun, Deng, and Han, “Probabilistic Models for Text Mining",
Chapter 8 of Aggarwal and Zhai (ed.), Mining Text Data, 2012

(gives P(wy,...,wyla, 8)).

» Griffiths and Steyvers, “Finding Scientific Topics”, PNAS, 2004
(collapsed Gibbs sampling for solving LDA)
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