
Design and Evaluation of a Pipelined Distributed

Information Retrieval Architecture

William Edward Webber

Department of Computer Science and Software Engineering

University of Melbourne

Submitted in total fulfilment of the requirements

of the degree of Master of Engineering

Produced on acid-free paper

June 2007

ii

Abstract

Web-scale search engines deal with a volume of data and queries that forces them

to make use of an index partitioned across many machines. Two main methods

of partitioning an index for distributed processing have been described in the

literature. In document partitioning, each processor node holds the information

for a subset of documents, while in term partitioning, each node holds the in-

formation for a subset of terms. Additionally, a novel architecture, pipelining,

has been proposed, offering to combine the best features of both architectures.

This thesis develops a careful methodology for the experimental comparison

of distributed information retrieval architectures, addressing questions such as

experiment scalability and query set generation. Novel methods are proposed for

accumulator pruning, and for compression of accumulators for shipping between

nodes in the pipelined architecture.

A meticulous experimental assessment of the three distributed architectures

is then undertaken. The results demonstrate that term distribution suffers a

severe processing bottleneck. Pipelining resolves term distribution’s processing

bottleneck, while maintaining its superior I/O characteristics. However, pipelin-

ing suffers from serious load imbalance between the nodes, fails to fully utilise

the cluster’s processing capacity, and scales poorly. Document distribution, in

contrast, distributes workload evenly and scales well.

Load balancing through the intelligent assignment of terms to partitions is

explored, but fails to fully resolve the imbalance of the pipelined architecture.

Instead, the partial replication of high-workload terms is proposed, coupled

with the intelligent routing of queries. These techniques resolve pipelining’s

load imbalance, allowing it to marginally outperform document distribution.

The partially-replicated pipelined architecture is shown to benefit from sys-

tem scale. It also significantly outperforms document distribution in a memory-

limited environment, suggesting that it would also outperform for larger collec-

tions relative to cluster size. However, unlike document distribution, pipelin-

ing’s average response time at low to moderate loads does not scale. The system

implementor must therefore weigh the relative benefits of the two architectures.

iii

iv

Declaration

This is to certify that

(i) this thesis contains only my original work towards the degree of Master of

Engineering except where indicated in the Preface;

(ii) due acknowledgement has been made in the text to all other material used;

and,

(iii) this thesis is of approximately 30,000 words in length, exclusive of tables,

maps, bibliographies, and appendices.

William Webber

Department of Computer Science and Software Engineering

University of Melbourne

June 22, 2007

v

vi

Acknowledgments

Thanks go first of all to my supervisor, Professor Alistair Moffat, πøλυµητις,

a few minutes of whose advice was frequently of more benefit than many hours

of my own efforts. Thanks go also to my second advisor, Professor Justin Zobel

of RMIT University, without whose support I would never have started this

project, and without whose encouragement I would scarcely have completed it.

I have been fortunate to have had as my senior colleague and mentor Dr Vo

Ngoc Anh. His advice and support through the period of my candidature, and

his scrupulous reading and correction of my work in this thesis, has made him

nothing less than a third supervisor to me.

It has been my good fortune to enjoy the company, support, and kindness of

numerous colleagues in the Department: Amy Unruh, Ce Dong, Elsa Loekito,

Laurence Park. Mike Ciavarella, Robert Shelton, Shane Culpepper, Tony Wirth,

Yi Li, and YuYe Zhang. Particular thanks must go to Nicholas Lester, the lead

developer of the Zettair system, which has formed the basis of the software used

throughout the thesis.

Many friends have greatly helped me over the past eighteen months. My

appreciation goes to Pauline Chou, Joanne Zhu, and Yvonne Ren, for their

support and encouragement. Thanks also go to my family, in particular my

mother Jeananne Webber.

I would like to acknowledge the Australian Research Council, under whose

funding I was employed during the period of my candidature, and also to the

Department of Computer Science and Software Engineering for travel support,

and for the facilities made available to me.

This thesis would not have been possible without the support of all of these

people; but the remaining deficiencies are my own.

vii

viii

Preface

Publications arising from this thesis

The work on appropriate and inappropriate query sets and the generation of

synthetic queries in Section 4.1, on scalability of experimental design in Sec-

tion 4.4, and on controlling disk access variability in Section 4.5, was presented

at the 10th Australasian Document Computing Symposium [Webber and Mof-

fat, 2005].

The dynamic query pruning technique described in Section 5.2 was presented

at the 6th International Conference on Web Information Systems [Lester et al.,

2005]. This work was done jointly with Nick Lester and Justin Zobel of RMIT

University, and is also incorporated in Nick Lester’s recently submitted PhD

Thesis, “Efficient Index Maintenance for Text Databases” [Lester, 2006].

The experimental assessment of the document-distributed, term-distributed,

and pipelined architectures presented in Chapter 6 has been published in the

journal Information Retrieval [Moffat et al., 2006b]. This thesis uses a later

version of the software and some different experimental settings, and so the

precise timings differ from those presented in the journal paper, although the

relativities are the same. This work was done jointly with Justin Zobel of RMIT

University and Ricardo Baeza-Yates of the University of Chile. Note that the

notion of pipelining as a distributed evaluation technique was formulated prior

to my involvement in the project, and my role starts with the experimental

evaluation.

Chapter 7’s investigation of load balancing in a pipelined system is an exten-

sion of work presented at the 29th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval [Moffat et al., 2006a].

This work was done jointly with Justin Zobel of RMIT University.

ix

Document preparation, tools and data

This document was prepared with TEX, LATEX and BibTEX, using the setspace,

multirow, bigbrace, algorithmic, algorithm, natbib, epsf, url, dcolumn,

and texnames packages. Figures were drawn using xfig, and graphs produced

with jgraph.

Experiments were run under the Debian GNU/Linux operation system. The

Zettair information retrieval engine developed at RMIT University was used

as the basis for system implementation. Programs were compiled using the

GNU C compiler. The Python programming language was used extensively for

managing experiments and collating results.

The query sets for the efficiency runs are based on a log provided by Excite,

Inc. The other raw data for these experiments was produced by the United

States National Institute of Standards and Technology via their TREC pro-

gram.

x

Contents

1 Introduction 1

2 Information retrieval 5

2.1 Background . 5

2.2 Models and metrics . 6

2.3 Indexes and processing . 8

2.4 Collections and standards . 14

3 Distributed information retrieval 17

3.1 Supporting web-scale workloads 17

3.2 Document partitioning . 18

3.3 Term partitioning . 20

3.4 Pipelining . 23

3.5 Previous research . 24

3.5.1 Simulated studies . 25

3.5.2 Empirical studies . 27

3.5.3 Other approaches . 28

3.6 Overview of research contribution 28

4 Experimental technique 31

4.1 Queries . 31

4.1.1 Appropriate and inappropriate query sets 32

4.1.2 Synthetic query set generation 34

4.2 Query parallelism . 37

4.2.1 Throughput versus average response time 38

4.3 Rank-biased dissimilarity . 40

4.4 Scalability . 41

4.5 Controlling disk access variability 42

4.6 Summary . 43

xi

5 Accumulator compression and pruning 45

5.1 Accumulator compression . 45

5.2 A new approach to accumulator pruning 48

5.2.1 Adaptive pruning . 49

5.2.2 Evaluation methodology and results 52

5.3 Calculating accumulator costs . 54

5.4 Alternative query modes . 55

5.5 Summary . 56

6 Experimental comparison of distributed architectures 57

6.1 Experimental data and procedure 57

6.2 Experimental parameters . 60

6.2.1 Setting simulq . 60

6.2.2 Scaling the accumulator limit 61

6.3 Experimental results . 62

6.3.1 Monolithic baseline . 62

6.3.2 Document distribution . 63

6.3.3 Term distribution . 64

6.3.4 Pipelined . 65

6.3.5 Adjusting the accumulator limit 66

6.4 Post-mortem . 67

6.5 Summary . 71

7 Load balancing 73

7.1 Statistics of query set imbalance 73

7.2 Load balancing through term assignment 75

7.3 Load balancing through partial replication 77

7.3.1 Routing schemes . 80

7.3.2 Degree of replication . 83

7.4 Summary . 86

8 Scalability 87

8.1 Scaling replication . 87

8.2 Memory-limited operation . 88

8.3 Throughput, response time, and system load 91

8.4 Summary . 94

9 Conclusions and future directions 95

9.1 Conclusions . 95

9.2 Future directions . 97

9.3 Summary . 98

xii

List of Tables

2.1 Implementation options for a full-text query evaluation engine. . 13

4.1 Proportional term ft for wt10g and GOV2 33

4.2 Proportional term workload for wt10g and GOV2 34

5.1 Effect of accumulator quantisation 47

5.2 Retrieval effectiveness of accumulator pruning 53

6.1 Experimental document collections 58

6.2 Throughput at varying simulq . 60

6.3 Scaling or fixing the accumulator limit 62

6.4 Throughput of monolithic system 63

6.5 Throughput of document distribution 63

6.6 Throughput of term distribution 64

6.7 Throughput of pipelining . 65

6.8 Effect of accumulator limit on throughput 66

6.9 Disk read characteristics . 68

7.1 Simulated load imbalance of term assignment 75

7.2 Throughput of term assignment 76

7.3 Observed load imbalance of term assignment 76

7.4 Simulated load imbalance of partial replication 78

7.5 Simulated load imbalance of varying degrees of replication 79

7.6 Performance of different routing strategies 82

7.7 Cost of replication in disk space 83

7.8 Throughput of varying degrees of replication 84

7.9 Comparing partial replication and document distribution 84

8.1 Scalability of partial replication 88

8.2 Document distribution with limited memory 89

8.3 Partially-replicated pipelining with limited memory 90

8.4 I/O wait loads of document-distribution and pipelining 90

xiii

xiv

List of Figures

2.1 Sample document-sorted inverted index. 10

3.1 A document-partitioned index. 19

3.2 A term-partitioned index. 21

3.3 Routing of a query through a pipelined system. 24

4.1 Sample query translations . 36

6.1 Busy load balance of document-distribution and pipelining 69

6.2 Aggregate load of document distribution and pipelining at intervals 70

6.3 Inverted list processing load of nodes in document distribution

and pipelining . 71

7.1 Busy load balance of partially-replicated pipelining 85

7.2 Busy load and load imbalance of partial replication at intervals . 86

8.1 Average query response times on 8-node system 92

8.2 Average query response times on 4-node system 93

xv

xvi

Chapter 1

Introduction

Knowledge is of two kinds.

We know a subject ourselves,

or we know where we can find information upon it.

Samuel Johnson, from Boswell, Life of Johnson, 1791.

The World Wide Web has become the nexus of the information age, and web

search engines are a ubiquitous part of modern life. Users expect that a web

search engine will be comprehensive, and that it will provide results almost

instantaneously. At the same time, the web already contains billions of doc-

uments, and is growing faster than the processing capacity of hardware. The

mass of data to index and the volume of queries to support force the deployer

of a web-scale search engine to distribute processing across a large number of

machines. So immense are the processing requirements of such a system, that

even a small improvement in the efficiency of query evaluation can result in

large savings in hardware and operational costs.

Fortunately, ranked query evaluation (the information retrieval technique

implemented by modern search engines) is a readily distributable task. Updates

to the search engine’s index can be batched and made off-line. As a result, search

engines operate on an index that is essentially read-only, and so can easily be

replicated. In addition, query processing is a largely decomposable task. The

index can be broken up into pieces, and processing performed on each piece in

a substantially independent way.

Two main methods of partitioning an inverted index (the form of index em-

ployed by modern search engines) have been described in the research literature.

The most straightforward and perhaps most obvious one is to partition the index

into subsets of documents, where each partition is a largely autonomous index

of one part of the document collection. Document partitioning offers the clean-

1

est decomposition of the query evaluation task. Queries can be evaluated upon

each partition of the index with a very high degree of independence from the

other partitions. However, some researchers have suggested that an alternative

method of partitioning the index offers superior efficiency. In term partitioning,

the index is broken up into subsets of terms, with each partition handling a sep-

arate portion of the index’s vocabulary. The decomposition is less clean than

in document partitioning, as query evaluation requires the cooperation of all

subindexes holding term information for the terms of a given query, for instance

by shipping this information to a central node for processing. The compensation

is that term information is not fragmented across multiple partitions, promising

better disk access characteristics.

A number of studies have compared the document-wise and term-wise meth-

ods of partitioning an inverted index, both in simulation and (less commonly)

in implementation. However, the results of these studies have been inconsistent.

The superior data contiguity of term partitioning is attractive, but is the central

processing of the index information a scalable solution, or an effective use of the

cluster’s processing capacity? And is there a way of combining term partition-

ing’s desirable data arrangement characteristics with document partitioning’s

ready decomposition of the processing task? These are the questions that this

thesis sets out to answer.

Thesis structure

The thesis is organised as follows. A brief overview of the field of informa-

tion retrieval is provided in Chapter 2. The problem domain that research into

information retrieval addresses is sketched, and the most essential items of ter-

minology are introduced. Information retrieval uses query evaluation models

that both provide a sound theoretical basis for the discipline, and also inform

pragmatic implementation decisions; some of the most popular models are de-

scribed in Chapter 2. Since the focus of the thesis is on the efficient implemen-

tation of distributed processing, a firm understanding of index construction and

query processing mechanisms is an essential background; such an understanding

is provided in Chapter 2. Finally, the standard datasets and tools developed

by the research community for evaluating the effectiveness of different infor-

mation retrieval techniques, particularly centering around the TREC effort, are

introduced.

Chapter 3 describes the current state of the art in distributed information

retrieval. The motivation for, and aims of, the sub-discipline are outlined. The

two main existing distribution methods are described, namely document-wise

and term-wise distribution. A novel architecture, called pipelining, is then intro-

2

duced. Next, previous research in the area of distributed information retrieval

is surveyed, and finally, the research contributions of the thesis are outlined.

Chapter 3 concludes the introductory portion of the thesis.

Performing reliable experiments on distributed information retrieval systems

requires some care. A thorough methodology for distributed information re-

trieval experiments is introduced in Chapter 4. A variety of issues are addressed,

including query set selection or generation, query processing parallelism, scala-

bility, and disk access variability.

The pipelined architecture ships the query processing state between nodes

in the cluster. The processing state consists primarily of partially-evaluated

document scores or accumulators, and since the number of them can potentially

be very large, their shipping could become a major bottleneck for a pipelined

system. Chapter 5 describes compression techniques for reducing the size of

the shipped accumulators, and proposes a novel dynamic pruning regime for

limiting the total number of accumulators created in the course of evaluating

each query.

The experimental methodology developed in Chapter 4 is deployed in Chap-

ter 6, in a careful evaluation of the document-distributed, term-distributed, and

pipelined architectures. The experiments test the different architectures with

varying collection and cluster sizes. A post-mortem on the (initally less than

encouraging) results for the pipelined architecture determines that pipelining

has a serious problem with processing load imbalance between the nodes of the

cluster.

Possible solutions to pipelining’s poor balancing of load are examined in

Chapter 7. Load balancing through explicit term assignment is first examined,

and found to be insufficient. Instead, partial term replication and intelligent

query routing are proposed, and demonstrated to largely solve pipelining’s load

balance problems.

Chapter 8 is the last of the experimental chapters. It tests the scalability of

the partially-replicated and intelligently-routed pipelined architecture. Partic-

ular attention is paid to operation in a memory-limited environment, and the

scalability of average response time in the pipelined and document-distributed

architectures.

Finally, Chapter 9 summarises the findings of the thesis, and proposes di-

rections for future research.

3

4

Chapter 2

Information retrieval

This chapter provides a brief introduction to the theory and implementation

of ranked query evaluation. The first section gives an overview of the field of

information retrieval and the place of text retrieval and ranked query evalua-

tion within it. In the second section, the use of similarity metrics to assess the

relevance of documents to queries is introduced, and one commonly-used sim-

ilarity metric, the cosine measure, is described. Section 2.3 then examines the

construction of indexes to support ranked query evaluation, and the processing

regimes that operate upon these indexes. And finally, metrics for assessing the

effectiveness of a retrieval system are described in the fourth section. These

sections provide the necessary background for understanding the examination

of distributed information retrieval that will follow in Chapter 3.

2.1 Background

The field of information retrieval is broadly concerned with using information

sources or data to meet people’s information needs. The user expresses their

information need in the form of a query; the information retrieval system eval-

uates the query with reference to its information pool or collection; and on the

basis of the evaluation, the information retrieval system provides the user with a

set of data that answers the query. The process may be repeated in an iterative

and exploratory way.

The collection of data that an information retrieval system manages may be

structured, such as in a relational database system, in which case the queries can

manipulate the structure, using, for example, SQL. Alternatively, the data may

be semi-structured or unstructured, as with web pages and plain text documents.

In this case, the user’s query generally takes the form of a series of words, or

terms, that describe what they are searching for. Such a query may contain

5

Algorithm 1 : core query evaluation algorithm

Input: a collection of documents D, and a query q

1: assign A ← {}
2: for each document d ∈ D do
3: assign sd ← sim(q, d)
4: assign A ← A∪ (sd, d)
5: sort A by decreasing sd

Output: top r documents of A

Boolean operators and phrases, or may be a free text query, made up simply of

a list of terms.

Free-text querying has become particularly popular and important with the

advent of the World Wide Web as an enormous, semi-structured data source,

and of search engines as aids to users attempting to locate information within

it. There has been recent interest in attempting to use the Web to directly

answer users’ questions; for instance, by answering the question “what is the

capital of Spain?” with the answer “Madrid”. However, traditionally, free-text

information retrieval engines have sought to answer user queries by presenting

a document or list of documents considered likely to be relevant to the user’s

query. Typically, degree or likelihood of relevance is estimated via a scoring

function (although not necessarily reported), and the user is presented with the

answer documents ranked in decreasing estimated relevance. See Witten et al.

[1999], and Baeza-Yates and Ribeiro-Neto [1999], for an overview of the field of

information retrieval.

The above discussion can be summarised as follows:

Definition 1 A full-text search engine takes a user’s query q, consisting of

discrete query terms {t1, · · · , t|q|}; evaluates it against a document collection

D, consisting of documents {d1, · · · , dN}; and answers it with a ranked list of

documents {a1, · · · , ar}, ai ∈ D, ordered in decreasing estimated relevance to the

query q.

The rest of the thesis assumes a search engine performing as described in

Definition 1.

2.2 Models and metrics

A simple processing model for a search engine as described in Definition 1 is

provided in Algorithm 1. The degree of relevance of each document to the query

q is estimated by the similarity metric, sim. A similarity metric takes a 〈q, d〉

pair as input and returns a similarity score as output. Then the documents are

6

ordered by their similarity score, and the top r documents are returned to the

user in this order.

A large number of different similarity metrics are described in the litera-

ture. Zobel and Moffat [1998] identify eight different components of a similarity

metric, combining to create in the order of 100,000 mathematically distinct

measures—and that is not including the recently-developed language model for-

mulations. A common factor to most metrics is that they derive the similarity

of a document to a query from the relative or absolute frequency of query terms

in the document and in the collection. Each query term t occurring in docu-

ment d is assumed to have a contribution wd,t to that document’s similarity

score. Most metrics derive wd,t using a “tf ·idf ” formulation, which states that

the term’s contribution wd,t is positively correlated with the term’s frequency

within the document (tf), and negatively correlated with the number of doc-

uments it occurs in (idf or inverse document frequency) [Salton and McGill,

1983].

An early and popular model for evaluating document-query relevance that

encodes the tf ·idf principle is the vector space model [Salton et al., 1975]. In

this method, a document is modelled as a vector in multi-dimensional space,

where each distinct term corresponds to a dimension, and the document’s co-

ordinate in that dimension is defined by the respective wd,t value. The query

is modelled in the same way. The similarity score between a document and a

query is then calculated as the closeness of their respective vectors. The closer

the two vectors are, the more similar the document and the query, and hence

the more relevant the document is estimated to be to the query. Conventionally,

the vector similarity is calculated as the cosine of the angle between the vectors,

which is the same as the length-normalised inner product of the vectors:

sim(q, d) = cosine(~q, ~d) =
~q · ~d

|~q||~d|
(2.1)

=
1

WqWd

n
∑

t=1

wq,t · wd,t (2.2)

where

Wd =

√

√

√

√

n
∑

t=1

w2
d,t

and similarly for Wq, and where ~q and ~d are the vector representations of q and

d, respectively.

7

The class of metrics derived from Equation 2.2—with some suitable formu-

lation for wd,t and wq,t—are collectively termed the “cosine measure”. More

recently, interest has turned to metrics based upon probabilistic models, such

as Okapi BM25 [Robertson et al., 1994], and upon language models. Indeed,

the relevance metric used in the system used for the experiments reported in

this thesis is based upon a unigram language model with Bayesian smoothing

using Dirichlet priors [Zhai and Lafferty, 2004]. However, since choice of metric

does not greatly affect the distributed algorithms proposed in this thesis, and

since the cosine measure is the simplest and longest established, it will be used

here for exposition.

To calculate the document and query vectors, formulations for wd,t and wq,t

must be chosen. A number of choices are possible. The following formulations,

given by D’Souza et al. [2000], are typical:

wd,t = log(fd,t + 1) (2.3)

wq,t = log(fq,t + 1) · log

(

N

ft

+ 1

)

(2.4)

where fd,t is the number of times term t occurs in document d, fq,t is the number

of times term t occurs in the query q, N is the total number of documents in

the collection, and ft is the number of documents that term t occurs in. Note

that in the above, tf is encoded in both wd,t and wq,t, but idf is only encoded

in the latter. Substituting these formulas into Equation 2.1, we get:

sim(q, d) =
1

Wd

∑

t∈q∩d

(log fd,t + 1) · (log fq,t + 1) · log

(

N

ft

+ 1

)

(2.5)

where Wq has been dropped, as it is the same for each document for a given

query, and so does not affect ranking.

Current web search engines also use a range of other features to rank doc-

uments, including evidence of document quality such as PageRank [Brin and

Page, 1998]. Such techniques have not been implemented in the experimental

system used here; however, a discussion of how they might be implemented in

a distributed environment can be found in Section 5.4.

2.3 Indexes and processing

In order to enable the efficient processing of user queries, an index of the collec-

tion is built. The most common form of index for full-text query evaluation is

8

the inverted index [Fox et al., 1992, Zobel et al., 1998, Witten et al., 1999]. For

tf ·idf -based relevance metrics, such as the cosine measure given in Equation 2.5,

the information that must be collected for each term is its frequency throughout

the collection; which documents the term occurs in; and how often it occurs in

each document. Each document occurrence and frequency pair is referred to

as a pointer or posting, and the list of them is called an inverted list. Within

inverted lists, documents are referred to by number, and a separate data struc-

ture known as a docmap is used to translate from document number to the full

document name (for instance, the URL of the document), and also to provide

document statistics if required for query evaluation (for instance, the document

length for length-normalised similarity metrics). Finally, there needs to be a

way to quickly access information for a given term, which is generally provided

by a separate vocabulary. A common choice for implementing the vocabulary is

a B- or B+-tree [Cutting and Pedersen, 1990].

Some query evaluation regimes also require that the index hold the posi-

tions within each document that a term occurs in. Positional information is

necessary, for instance, for phrase query processing; but there are also relevance

metrics that make use of term proximity even for simple ranked queries. Such

information is referred to as word positions or offsets. An index holding word

positions is referred to as a word-level index; one holding only document occur-

rences is referred to as a document-level index. Word position information is

not used during query evaluation in the system employed for the experiments

in this paper, and the indexes used do not contain word positions.

Document pointers within a term’s inverted list can be held in a number of

orderings. The most obvious is in increasing order of document number. Such

an arrangement is referred to as document-ordered or document-sorted. The doc-

ument ordering of inverted lists simplifies the adding of new documents to the

index. Since the new documents are generally assigned the next document num-

ber in sequence, their pointers can be added to the end of the existing inverted

lists, without needing to modify the order or content of existing pointers. In

addition, document-ordered lists simplify the processing of Boolean and phrase

queries, which can be performed as ordered merges upon the inverted lists.

However, since users generally only wish to see a listing of the highest-relevance

documents, the exhaustive evaluation that document ordering of inverted lists

requires can be wasteful.

Figure 2.1 gives a sample of a document-ordered, offsetless inverted index

for a fifteen-document collection. The index consists of a vocabulary holding

terms and term statistics; the inverted lists, with the on-disk location of a term’s

inverted list given in its vocabulary entry; and the document map. A selection

of terms from the index are shown. The entry for “cat” is read as follows:

9

��

��

��

��

3

4

6

3

5
...

...
...

...

��

Inverted Lists

ftTerm

cat

hat

mat

rat

sat

Vocabulary

2:1 5:2 7:1 11:3 15:1

3:1 5:3 12:5

1:2 5:1 9:1 13:2

6:3 15:28:1

4:1 8:2 11:1 14:210:42:2

Document Map

. . .

 4 17 c.com/wum

15 13 g.com/quux

14 19 g.com/zxc

 1 15 a.com/foo

 2 23 a.com/bar

 3 11 b.com/baz

Num Len URL

Figure 2.1: Sample document-sorted inverted index.

The term “cat” occurs in five documents. It occurs once in doc-

ument number 2, twice in document number 5, once in document

number 7, three times in document number 11, and once in docu-

ment number 15.

An alternative to document-ordered inverted lists is to order lists by de-

creasing fd,t, which is known as frequency ordering. Due to the tf ·idf principle,

pointers with higher fd,t values generally have higher wd,t contributions. There-

fore, under frequency ordering, processing of an inverted list can be cut short

when it is determined that future pointers will not have a significant effect on

document rankings [Persin et al., 1996]. An extension of frequency ordering is

to pre-compute the similarity contribution or impact of each pointer, to store

the impact instead of the raw fd,t value in the inverted list, and to order the

list by decreasing impact. Such an arrangement is known as impact ordering

[Hawking, 1998, Anh and Moffat, 2002]. Both frequency ordering and impact

ordering allow for greater efficiency in processing ranked queries. However, up-

date is more complicated than for document ordering, as is the processing of

Boolean or phrase queries. The system employed for experiments in this thesis

uses document-ordered inverted lists.

Inverted list information is typically stored and even processed in a com-

pressed form. The motivation behind the compression of inverted lists is not

just to save space on disk. Compressed inverted lists are faster to read off disk,

and take up less main memory, allowing for greater caching of data [Witten et al.,

1999, Moffat and Zobel, 1996]. Inverted list compression schemes typically use

10

a variable number of bits or bytes to encode numerical values, meaning that

smaller values take up less space than larger ones. The fd,t values are typically

small, and document numbers in document-ordered inverted lists are encoded

as the difference or gap from the preceding document number, with the result

that they are also, on average, relatively small.

The compression scheme employed by the system used in this thesis is a

variable-byte or vbyte scheme [Scholer et al., 2002]. In this scheme, the low-

order 7 bits in each byte are used to represent a numerical value, whereas the

high-order bit indicates whether the byte is the last or stopper byte in the

encoded number or not. Thus, values up to 128 can be represented in a single

byte (0 never occurring, either as a document number difference or as an fd,t).

The process of compressing a term’s inverted list can best be illustrated with

a simple example. Start with the following sample raw inverted list:

〈15:3, 52:2, 268:1, 670:4, 798:3〉

which states that the term occurs three times in document fifteen, twice in doc-

ument fifty-two, and so forth. Rather than the absolute value of each document

number being held, it can be represented as the difference or gap from the previ-

ous document number in the list. As the list is document-sorted, the document

gap will always be positive. Taking document gaps produces the following list:

〈15:3, 37:2, 216:1, 302:4, 128:3〉

Because each document occurs in the list only once, and because a pointer is

only recorded if its fd,t is at least 1, the value 0 never needs to be encoded.

Therefore, each value in the list can be decreased by one before encoding:

〈14:2, 36:1, 215:0, 301:3, 127:2〉

Finally, these values can be vbyte-encoded:

2 36 1 1 0
0 0 1 0 0 1 00 0

215

87
0

2 45

301

127 23}0 }0
14

where each box represents a byte, with the high-order bit shown in the top-left

corner and the decimal value of the low-order seven bits show in the center,

and with the two multi-byte values bracketed together. Stopper bytes have the

high-order bit set to 0 and are unshaded. Whereas the raw inverted list with

11

32-bit integers would take up 40 bytes, the vbyte-encoded list uses only 12.

A variable-byte encoding scheme does not achieve as good compression as

a variable-bit scheme does, but is simpler to implement and provides faster

decoding. Using such a scheme, an inverted index can be reduced to around

15% of the size of the original collection [Scholer et al., 2002] if word offsets

are included, and less again if word offsets are excluded. The offset-less in-

verted indexes used in this thesis’s experiments are around 4% of the size of the

collection. More recently, word-oriented coding schemes have been proposed

which combine good compression ratios with excellent decoding speeds [Anh

and Moffat, 2005, 2006b]. Other methods are described by Witten et al. [1999].

The evaluation of a query with document-ordered inverted lists can occur

in one of two ways, either document-at-a-time or term-at-a-time [Turtle and

Flood, 1995, Kaszkiel and Zobel, 1998]. In document-at-a-time processing, the

inverted lists for all query terms are opened (and loaded if memory allows), and

processed in a multi-way merge. The similarity score for each document is then

fully computed before the next document is considered. Document-at-a-time

processing has the advantage that final scores for each document are known

immediately; these scores can then be used in a fairly straightforward way to

prune out documents that are not going to make the top r results requested by

the user. Document-at-a-time processing has the disadvantage that all inverted

lists must be read into memory at once, or else multiple reads must be made for

each list. There is also some additional computational complexity in performing

the multi-way merge.

In term-at-a-time processing, the inverted list of each term is processed in

turn. Term pointers create or add to partial relevance scores for the documents

they reference; these scores are not complete until the final query term is pro-

cessed. The partial document relevance scores together with their document

identifiers are referred to as accumulators. For document-ordered inverted lists,

the most suitable data structure to hold the accumulators in is also a document-

ordered list. Then, each inverted list is merged with the existing accumulator

list, adding to the partial scores of documents for which pointers have already

been encountered, and creating new accumulators for documents encountered

for the first time. Term-at-a-time processing has the advantage that only one

inverted list has to be held in memory at one time; it is the processing model

employed in this thesis.

As mentioned, term-at-a-time processing requires the maintenance of a list

of accumulators, holding partial document scores. For queries that include

frequent terms, the list of accumulators can grow very large. Potentially, as

many accumulators can be created as there are documents in the collection.

The largest experimental collection employed in this thesis has around 25 million

12

Choice Possibilities In this thesis
index level document-level, word-level document-level
list sorting document, frequency, impact-sorted document-sorted
compression vbyte, vbit, word-oriented vbyte
processing mode term-at-a-time, document-at-a-time term-at-a-time
query pruning quit, continue, dynamic dynamic

Table 2.1: Implementation options for a full-text query evaluation engine.

documents. Allowing 8 bytes for each accumulator, an accumulator set with as

many items as documents in the collection would require 200MB of memory.

Such a large memory footprint eats into the memory available for file caching,

reduces the capacity for parallelised processing of queries, and increases the

processing load of memory management and comparisons during the merging

of accumulator and inverted lists. The situation is particularly wasteful given

that the user typically requires as few as the top 20 results, and rarely more

than the top 1,000.

Various techniques have been proposed in the literature for pruning the

number of accumulators used in term-at-a-time query evaluation. The best

documented are the Quit and Continue strategies described by Moffat and Zobel

[1996]. Both of these strategies work with the idea of an accumulator limit.

Accumulator growth is unconstrained until the accumulator limit is hit, meaning

that each new document occurrence creates a new accumulator; this is referred

to as OR-mode processing. In the Quit strategy, once the accumulator limit is hit,

processing stops, and the existing accumulators are immediately returned for

the top r results to be extracted. In the Continue strategy, processing continues,

but in what is referred to as AND-mode. In AND-mode, pointers for documents

with existing accumulators add to the scores of those accumulators, but pointers

for newly seen documents do not create new accumulators. Moffat and Zobel

[1996] report, from experiments on a collection roughly 2 GB in size, that an

accumulator limit of around 1%-5% of the total number of indexed documents

leads to retrieval effectiveness as good as that achieved if accumulator growth

is unconstrained. The issue of accumulator pruning is revisited in Chapter 5,

where a new pruning mechanism based around a dynamic threshold is proposed,

and shown to achieve better performance than the existing strategies.

Table 2.1 summarises the different choices to be made in implementing a

full-text query evaluation engine, the options for each choice, and the option

chosen for this thesis. The query evaluation system employed in this research

holds a document-level index with document-sorted inverted lists compressed

using a vbyte encoding scheme. Query processing is performed according to

13

the term-at-a-time method, with the accumulators being pruned using a new

dynamic query pruning strategy.

The software used in this thesis is a customised version of the Zettair in-

formation retrieval system, developed at RMIT University in Australia (see

http://www.seg.rmit.edu.au/zettair), which incorporates all of the imple-

mentation choices described above. Modifications were made to support paral-

lelised processing and the distributed modes of operation discussed in Chapter 3.

2.4 Collections and standards

The goal of the document and query models and relevance metrics introduced

in Section 2.2 is to return the documents most relevant to a user’s query. How

well a given method achieves this goal is referred to as its retrieval effective-

ness. Assessing retrieval effectiveness is ultimately subjective; the user posing

the query must decide whether the search engine has answered the query, and

since the query is only an approximate representation of the user’s underlying

information need, this assessment will differ between different users and even

at different times for the one user. Nevertheless, for research purposes, some

readily calculable, comparable, and repeatable measure of retrieval effectiveness

is essential, in order to assess and compare the relative merits of different query

evaluation methods.

Retrieval effectiveness metrics generally require three items of data: a stan-

dard document collection; a standard set of queries or topics to be run against

that document collection; and a standard set of judgments, created by human

assessors, as to which documents in the collection are relevant to each query.

The latter are sometimes known as qrels. For large collections, it is generally

not feasible to assess every document for relevance to every query. Instead,

pooling is commonly used, where for each query the documents retrieved by dif-

ferent systems to some depth r are pooled together, and only these documents

are assessed for relevance. Pooling is likely to leave many relevant documents

undiscovered; however, it does allow for a fair comparison of effectiveness be-

tween different retrieval systems, even if a retrieval system has not contributed

documents to the pool, provided pooling is done to an adequate depth [Zobel,

1998].

Relevance judgments may be binary, assessing documents as either wholly

relevant or wholly irrelevant to a query, or they may assign degrees of relevance,

for instance by distinguishing between highly and partially relevant documents

[Voorhees, 2001]. The effectiveness metric then compares the answers produced

by the search engine against the relevance judgments or qrels for the collec-

tion and query set, and generates an effectiveness score for the run [Harman,

14

1993]. Where degree of relevance has been assigned in the qrels, this may either

be collapsed to binary relevance at some relevance threshold, or an effective-

ness metric that incorporates degree of relevance may be used [Kekäläinen and

Järvelin, 2002]. In this thesis, binary relevance judgments are employed.

There are two basic metrics for measuring retrieval effectiveness at some cut-

off level r of retrieved documents. The first is precision: what proportion of the

documents returned by the system are relevant? The second is recall : of all the

relevant documents existing in the collection, what proportion does the system

actually return? Let R be the set of relevant documents in the collection, and

Ar be the set documents retrieved by the system to rank r; then:

Precision = |R ∩ Ar|/|Ar|

Recall = |R ∩ Ar|/|Rr|

There are numerous variants on these basic measurements, measuring to dif-

ferent numbers of returned documents and with different biases towards higher-

ranked results. One of the most commonly used effectiveness metrics, and the

one employed in this thesis, is mean average precision, or MAP. Mean average

precision is calculated as follows. For each query, consider all relevant docu-

ments returned in the ranked top r results, where r = 1,000 is a typical value.

For each relevant document returned, calculate the precision at that document’s

rank. For each relevant, but not retrieved, document, assign a precision of 0.

Then find the average of all these precisions for the query. Finally, calculate

the mean of all these precision averages across the query set. The MAP metric

incorporates both precision and recall elements, and rewards returning more

relevant results higher up the ranking.

To illustrate the calculation of average precision for a given query q, let D

be the collection of documents, R the set of documents in D that are relevant to

query q, and A the ranked set of documents retrieved by the system in answer

to query q. Assume, without loss of generality, that

R = d3, d7, d12, d18, d21, d38

A = d10,d7,d21, d1,d3

where R ∩ A has been highlighted within A. The answer set A holds relevant

documents at ranks 2, 3, and 5. The precisions at these ranks are 0.50, 0.66, and

0.60; the unretrieved documents d12, d18, and d38 are assigned precision 0. The

average precision ofA is therefore (0.50+0.66+0.60+0.00+0.00+0.00)/6 = 0.29.

15

An obvious problem with effectiveness metrics that incorporate recall, in-

cluding MAP, is that not all relevant documents may have been identified. This

is the case for large collections where document pooling has been used. To dis-

cover even a large proportion of relevant documents, pooling must be done to an

adequate depth, and requires a reasonable number of contributing systems [Zo-

bel, 1998]. However, Sanderson and Zobel [2005] argue that shallower pooling

with a larger number of queries is a statistically more effective use of assessors’

time. Additionally, the user model underlying MAP is not convincing; in most

circumstances, a user’s satisfaction at discovering relevant documents is in no

way affected by the existence of unreturned relevant documents of which the

user is not even aware. Finally, MAP typically evaluates rankings to a depth of

1,000, whereas in the majority of web searches the user does not look beyond

the fourth document in the ranking [Joachims et al., 2005]. In this light, a new

effectiveness metric called rank-biased precision or RBP is proposed by Moffat

and Zobel [2006]. RBP does not incorporate a recall component, and therefore

for a given evaluation depth r is unaffected by the existence of (known or un-

known) relevant documents beyond depth r. Nevertheless, MAP is the metric

used in evaluating effectiveness throughout the current study. Our focus here is

on efficiency, and effectiveness results are given to quantify the extent (if any) to

which efficiency gains are degrading retrieval effectiveness. The fact that MAP

performs deep evaluations, and is in widespread use in the IR community, make

it a suitably conservative choice for our purposes.

Effectiveness metrics are of limited use unless standard collections, query

sets, and relevance judgments are created and made available to the research

community. The most active and influential effort to provide such standard

experimental data is the annual TREC conference, sponsored by the National In-

stitute of Standard and Technology in the US [Voorhees and Harman, 2005] (see

http://trec.nist.gov). TREC has been running since 1992, and has created a

number of different text corpora and accompanying query sets and qrels over

that time. The largest of these collections to date is the 426 GB GOV2 collection,

used in the Terabyte track of TREC. The GOV2 collection was crawled in late 2004

exclusively from websites in the .gov domain. The collection consists of roughly

25 million documents, most of which are HTML web pages, with the remainder

being PDF documents converted to plain-text format. The GOV2 collection and

subcollections drawn from it are used in the experiments in this thesis. The TREC

effort has also produced two standard query sets to accompany this collection,

TREC topics 701-750 and 751-800, and corresponding qrels for these query sets.

The former query set, and the corresponding qrels, are used for effectiveness

measurements in this thesis.

16

Chapter 3

Distributed information

retrieval

Chapter 2 introduced the field of information retrieval, and described the index-

ing and processing regimes of an information retrieval engine. In this chapter,

we examine techniques for distributing the processing of an IR system across

multiple machines, something that is essential to support web-scale systems.

The first section examines the workload placed upon web-scale search engines,

and introduces the concepts of partitioning and replication. In the second and

third sections, the two standard partitioning strategies described in the litera-

ture, namely document partitioning and term partitioning, are presented. The

fourth section introduces a new architecture, pipelining, which aims to combine

the best characteristics of document and term partitioning. Previous research

in the area of distributed information retrieval is reviewed in the fifth section.

Finally, the sixth section provides an overview of the remainder of the thesis,

summarising the original research contributions to be presented in Chapters 4,

5, 6, 7 and 8.

3.1 Supporting web-scale workloads

Using the optimisation techniques described in Chapter 2, a single-machine or

monolithic information retrieval system is able to support impressive workloads,

even running on commodity PC-class hardware. Experimental results given in

Chapter 6 show that the Zettair search engine, running on such hardware, can

process over 15 queries per second against a 426 GB collection. Impressive as

the throughput achievable by a monolithic IR system is, however, it is a small

fraction of the workload that a contemporary web-scale IR system is required to

17

support. A recent study estimated that as of 2005, there were over 11.5 billion

indexable documents on the web [Gulli and Signorini, 2005]. At an estimated

20 KB per document, this equates to something in the order of a quarter of

a petabyte of text. Even three years ago, Google was described as handling

thousands of queries per second [Barroso et al., 2003], which for such a large

amount of indexed text equates to a workload some hundreds of thousands times

greater than is supportable by a single PC-class machine. And the workload is

growing faster than the capacity of individual machines to support it [Levene

and Poulovassilis, 2001].

Due to the workload that must be supported, the implementor of a web-scale

search engine is forced to distribute query processing across multiple machines.

There are two basic ways in which this can be done. First, the index can

be partitioned into subindexes, each managed by a separate machine, leaving

each machine with a smaller index to handle. And secondly, the index can be

replicated across multiple machines, and the query stream split between these

machines, with the result that each machine has to handle fewer queries per

time interval. Partitioning and replication can also be combined, for instance

by first partitioning the index amongst a cluster of a given number of machines,

and then replicating that cluster—which is, in fact, is the standard mechanism

for handling workload in web search engines [Barroso et al., 2003]. A num-

ber of studies have examined the performance trade-offs between partitioning

and replication [Cahoon and McKinley, 1996, Orlando et al., 2001, Cacheda

et al., 2004]. Whole-of-index replication is not examined in the current re-

search. Instead, this thesis is concerned with different methods of partitioning

and architectures for performing distributed query evaluation upon partitioned

indexes.

3.2 Document partitioning

One way of partitioning an index into subindexes is to assign a subset of the

documents in the collection to each subindex. Partitioning can be performed by

building a monolithic index and splitting up its inverted lists into the designated

subsets by document ids. Alternatively, subcollections of the full document col-

lection can be created, and a separate subindex built for each subcollection, by

the node that is to host that part of the index. Whichever way partitioning is

performed, the resulting subindexes are largely autonomous, capable by them-

selves of answering queries upon the subcollections they manage. Partitioning

an index into document subsets is referred to here as document partitioning. It is

also referred to in the literature as the host index [Tomasic and Garćıa-Molina,

1993] or local index [Ribeiro-Neto and Barbosa, 1998] organisation, in that each

18

��

��

��

��

��

��

��

��

��

��

�� ��

��

Partition 1
...

...
...

2hat 3:1 5:3

2cat 2:1 5:2

2mat 5:11:2

2sat 2:2 4:1

Partition 2

...
...

...

mat

cat 7:1

rat

1

1

2 8:1

sat 10:42

9:1

6:3

8:2

Partition 3

...
...

...
...

cat 2 11:3 15:1

hat 1 12:5

mat 1 13:2

rat 1 15:2

sat 2 11:1 14:2

Figure 3.1: A document-partitioned index.

host (node) in the cluster locally holds its own, largely standalone index.

Figure 3.1 illustrates a three-way document partitioning of the sample in-

verted index introduced in Figure 2.1. In this partitioning, Partition 1 holds

information for documents 1 through 5, Partition 2 for documents 6 through 10,

and Partition 3 for document 11 through 15. Each partition also holds a local

vocabulary, containing information for all terms that occur in the document

subcollection it indexes. If a term occurs in more than one partition, as will be

the case with reasonably-sized collections for all except the rarest terms, then it

will have more than one vocabulary entry. Similarity metrics that employ per-

document statistics (such as normalisation by document length) will also have

document maps hold these statistics in each partition (not shown in Figure 3.1

for space reasons).

19

Given a cluster with a document-partitioned index, query processing can be

performed as follows. Each node holding a partition is referred to as an evaluator

node. One node takes on the responsibility of receiving and responding to user

queries; it is called the receptionist node. The receptionist could be a distinct

node, such as the controller node of the cluster, as is the case in the system

implemented for this thesis. Alternatively, one of the evaluator nodes could also

perform the role of receptionist, or it could be a task running on each of the

evaluators, with incoming queries distributed in round-robin fashion. Whichever

of these models is chosen, the user’s query arrives at the receptionist, which

broadcasts it to the evaluator nodes. Each evaluator node evaluates the query

against its local index, and returns the local top r results to the receptionist.

The receptionist then merges these results, and returns the global top r results

to the user. This method of query processing upon a document-partitioned

index will be referred to as document distribution.

In the document-distributed architecture, each local index could evaluate the

query in an entirely autonomous way, using only locally-held values for statistics

(such as ft) to compute the particular similarity metric being used. However,

the use of local statistics can lead to a degradation in retrieval effectiveness,

since relative term frequencies in a subcollection may not be the same as in

the full collection [Ribeiro-Neto and Barbosa, 1998]. Alternatively, global term

statistics could be distributed by the receptionist. For instance, along with

each query, the global ft values for the terms in the query could be sent. The

receptionist could collect and aggregate local statistics from evaluator nodes

at query evaluation time, or else could hold global term statistics in its own

vocabulary. The latter is the implementation method used in this thesis.

Document partitioning has the great benefit of simplicity, in design, imple-

mentation, and maintenance. Since each subindex is largely autonomous, it is,

for instance, trivial to turn a monolithic search engine system into a document-

distributed one, especially if local measures are used instead of global ones.

Query processing is performed in a highly parallelised way, giving excellent av-

erage response time at low loads.

3.3 Term partitioning

An alternative to partitioning the index by documents is to partition it by terms.

Under such a partitioning, each partition holds a subset of the global vocabulary.

The partition holds all information for each term in its vocabulary subset, the

full inverted list in particular. However, it holds no information on terms outside

of its vocabulary subset. This method of partitioning an index is referred to

here as term-partitioning. Elsewhere in the literature it is referred to as the

20

��

��

��

��

����

����

3hat

4 1:2 5:1 9:1 13:2mat

Partition 1

Partition 2

Partition 3����

cat 5 2:1 7:1 15:111:3

12:53:1 5:3

5:2

3rat 6:3 8:1 15:2

6sat 2:2 4:1 8:2 10:4 11:1 14:2

...
...

...

Figure 3.2: A term-partitioned index.

system index [Tomasic and Garćıa-Molina, 1993] or global index [Ribeiro-Neto

and Barbosa, 1998] organisation.

Figure 3.2 shows the same inverted index as Figure 3.1, this time term-

partitioned across three nodes. Partition 1 holds the information for terms

“cat” and “rat”, Partition 2 for terms “mat” and “rat”, and Partition 3 for the

term “sat”. The inverted list for each term is held contiguously, and each term

requires only a single vocabulary entry.

A number of strategies are possible for the construction of a term-partitioned

index, all of them more complex than for a document-partitioned one. First,

a monolithic index could be built, and then statically partitioned. Second,

multiple passes could be made over the collection, each extracting only terms

occurring in a given subcollection. Third, a central machine could parse the

collection and dynamically distribute index information to nodes responsible for

each partition. Or fourth, each node could build an index for a subcollection,

as when building a document-partitioned index, and then they could exchange

term information between them [Ribeiro-Neto et al., 1999].

Query processing on a term-partitioned index can also be performed in a

variety of ways. The model examined in this thesis involves a single processor

node, which performs the query evaluation, and a number of librarian nodes,

21

which store the subindexes. When a query arrives at the processor, it is parsed

into its constituent terms. For each query term, the processor sends a fetch

request to the librarian whose subindex holds that term’s information. The

librarian loads the information for the query term, including its inverted list,

and returns it to the processor. The processor then evaluates the query, using

the term information shipped from the librarian nodes, and returns the top r

results to the user [MacFarlane et al., 2000]. This processing model is referred

to here as term distribution.

The main advantage of a term-partitioned index lies in the better contiguity

of data on disk compared to document partitioning [Badue et al., 2001, Moffat

and Zobel, 2004]. In a document-partitioned index with k parts, most inverted

lists are broken up into k fragments. Thus, evaluating a query of |q| terms

requires k · |q| distinct disk reads to load inverted list information, each carrying

with it the overhead of a disk seek—assuming, that is, that the inverted lists are

not already cached in memory. On a busy system with an index large enough

to be mostly disk-resident during processing, the large number of disk seeks has

the potential to be a major performance bottleneck. In contrast, if the index

is term-partitioned, inverted lists remain unfragmented, and the evaluation will

require only |q| distinct disk reads.

Term partitioning also offers advantages through its smaller per-node vo-

cabulary. The vocabulary size advantage over document partitioning is muted

when only the on-disk or latent vocabulary is considered, since the vocabularies

of different document subsets differ substantially, due to the ongoing occur-

rence of new (predominantly non-dictionary) terms [Williams and Zobel, 2005].

However, if the vocabulary actually accessed during query processing is con-

sidered, then term partitioning’s advantage is more pronounced. Each node in

a document-partitioned system accesses a run-time vocabulary almost as large

as that of a monolithic index, whereas in a term-partitioned system each node

accesses and caches only a fraction of this vocabulary.

There are three problems with the term-distributed architecture sketched

above. The first is that all query processing is performed by the receptionist.

The other nodes in the cluster only perform the processing-light (albeit disk-

heavy) tasks of vocabulary lookup and inverted list loading, and are, in a sense,

little more than inverted list servers. In such an architecture, the receptionist

can easily become a bottleneck, with the other nodes being underused. The

cluster nodes could be given more work to do, for instance by replacing a simple

document-ordered inverted list processing regime with one involving dynamic

frequency- or impact-based filtering [Badue et al., 2001, Tomasic and Garćıa-

Molina, 1993]. Additionally, processing could be cycled between the cluster

nodes, rather than fixed on a single receptionist. However, the task of balancing

22

CPU workloads between cluster nodes and the receptionists would continue to

be problematic. The second issue of concern is the bandwidth required to ship

inverted lists to the receptionists. This, too, might become a bottleneck, and

even if it did not, the processing involved in reading so much data off the

network adds to the burden upon the receptionist. And the third problem is

that partitioning the collection by terms can lead to load imbalance, as the

distribution of term occurrences in both collections and query streams is highly

skewed [Tomasic and Garćıa-Molina, 1993].

3.4 Pipelining

The problem of a processing bottleneck at the receptionist in the term-distributed

architecture provides the inspiration for an alternative model for query evalu-

ation using a term-partitioned index. Instead of shipping all of the data to a

central processor, the new model ships the processing state to the data. Upon

receipt of a user query, the receptionist constructs a query bundle to encapsulate

the query and its processing state. The query bundle consists of the query itself;

a routing table of the nodes holding terms in the query, sorted in processing or-

der; and an (initially empty) accumulator structure. The query bundle is then

shipped amongst the evaluator nodes. On arrival at a node, the accumulators

are extracted from the bundle, and reconstituted in memory. Terms held on

that node are evaluated as normal. If the query has more nodes to visit, the

updated accumulators are serialised into the query bundle, and the bundle is

sent on to the next evaluator node. If, however, the current node was the last

node in the routing table, the top r results are extracted, and sent to the re-

ceptionist, who returns them to the user. The routing of the processing state

through a sequence of processor nodes inspires the name of the architecture,

which is pipelined distribution or simply pipelining.

Figure 3.3 illustrates the routing of a query through a pipelined system.

The index has been term-partitioned amongst 8 nodes. The query contains four

terms, which in order of increasing ft are denoted as t1, t2, t3, and t4. Term

t1 is held on node 3, t2 and t3 on node 6, and t4 on node 7. The receptionist

creates a query bundle containing the query and the routing information “node

3 : t1; node 6 : t2, t3; node 7 : t4”. The query bundle is sent first to node

3, which loads the inverted list for t1, and processes it to create an initial set

of accumulators. Node 3 adds these accumulators to the bundle, and ships it

to node 6. Node 6 extracts the accumulators, loads the inverted lists for terms

t2 and t3, and processes the lists against the existing accumulators to create

an updated set of accumulators. The updated accumulators are added to the

query bundle, which is then shipped to node 7. On receipt, node 7 extracts the

23

1 2 3 4

5 6 7 8
t2

t1

t3
t4

Query +
Routing

Results

Results

Queries

Receptionist

Evaluator Nodes

Figure 3.3: Routing of a query through a pipelined system.

accumulators, loads the inverted list for term t4, and processes the list against

the accumulators, completing the inverted list processing stage. Finally, node

7 extracts the identifiers of the documents with the highest r similarity scores,

and ships them to the receptionist, to be returned to the user.

The routing order of the query bundle needs to follow the processing order

specified by the query pruning regime being employed, which is typically by

increasing ft. For this reason, the receptionist must keep a vocabulary holding

at least this information, whereas in the term-distributed architecture the re-

ceptionist does not require such a vocabulary. Other than this, the pipelined

architecture runs on top of the same term-partitioned index that term distribu-

tion does.

Pipelining shares the same disk access and vocabulary size benefits that term

distribution has over document distribution. In addition, by sharing processing

amongst the nodes, pipelining removes the processing bottleneck at the recep-

tionist node. As will be demonstrated in Chapter 5, the use of accumulator

pruning and compression means that pipelining also uses less bandwidth than

the term-distributed architecture.

3.5 Previous research

Previous work in the area of distributed information retrieval can be roughly

divided into three categories: simulated studies of document and term distri-

bution; empirical studies of the two architectures; and alternative architectures

and approaches.

24

3.5.1 Simulated studies

A number of studies of distributed information retrieval architectures have pre-

viously been undertaken. One of the earliest comparative studies is that of

Tomasic and Garćıa-Molina [1993], who compare document and term partition-

ing. They build an analytical model of the evaluation of conjunctive Boolean

queries. Simulations of the different architectures are then constructed from

the model, and these simulations are used to determine each architecture’s per-

formance characteristics. In the term-distributed system, Tomasic and Garćıa-

Molina investigate “pre-fetching”, which involves retrieving the results for the

lowest-frequency term or single-machine sub-query. These partial results are

then sent to the remaining nodes, which intersect them with their local lists

before returning the combined results to the receptionist. The idea is to reduce

network bandwidth, and it has some similarities with pipelining, although as

described it can only be applied to Boolean queries. Tomasic and Garćıa-Molina

find that term-wise distribution greatly underperforms document distribution

due to network saturation.

The method of simulation based upon an analytical model has been followed

by a number of other researchers, generally with analytical models similar to

the one employed by Tomasic and Garćıa-Molina, which accounts for costs in

disk access, network, and (in a simplified way) processing. However, their an-

alytical model does not include caching effects, but assumes that all inverted

list information must be loaded from disk, and (implicitly) that all vocabulary

information is held in memory and incurs no access costs. A later study by the

same authors does introduce a simple caching model, but it is not integrated

into the main body of simulated results [Tomasic and Garćıa-Molina, 1996]. The

later study finds that with shorter inverted lists and a faster network, term-wise

distribution can outperform document distribution.

The system performance characteristics used to derive the analytical model

built by Tomasic and Garćıa-Molina [1993] are largely arrived at by rough esti-

mation, and where they are based upon actual benchmarking, are from outside

the IR domain. In contrast, Cahoon and McKinley [1996] take the monolithic

InQuery system, and measure the resources used for each of the operations

involved in query evaluation. These measurements are used to build a simu-

lation model. Again, however, caching and memory effects are not modelled,

and it is assumed that all inverted list data is disk resident. The document-

distributed architecture is investigated for clusters ranging in size from 1 to

128 machines, with a focus on the balance between clients, query brokers, and

servers. Term-wise distribution is not considered. This work is extended in

Cahoon et al. [2000] to include multi-threading. In turn, Cacheda et al. [2004]

25

adopt a similar methodology to explore the trade-offs between partitioning,

replication, and topic-specific clustering, but again only examining document

partitioning. The trade-offs between scaling and replication are explored in an

implemented system by Orlando et al. [2001], although some of their findings

are counter-intuitive, such as that a two-node replicated system is more than

twice as fast as a single-node unreplicated one, which suggests that something is

amiss either with their implementation or with their experimental methodology.

Measurements from a real system also form the basis for the analytical model

behind the simulation used in Ribeiro-Neto and Barbosa [1998] to compare the

document and term-distributed architectures. Here, in contrast to Tomasic and

Garćıa-Molina [1993], ranked query evaluation is modelled. Frequency-ordered,

rather than document-ordered, inverted lists are used [Persin et al., 1996]. As

a result, in the term-distributed architecture, the full inverted list is not re-

turned to the receptionist, but only the highest-frequency pointers, reducing

both bandwidth usage and processing load on the receptionist. The simulation

shows term distribution outperforming document distribution, especially as the

number of machines in the cluster grows.

The work of Jeong and Omiecinski [1995] is concerned with a single, multi-

processor and multi-disk system, rather than with distribution across multiple

machines. Nevertheless, it performs a simulated comparison between document

and term partitioning, in the context of multiple disks. Jeong and Omiecinski

explore in detail the issue of the I/O load imbalance that term partitioning

causes, due to inverted list lengths varying between terms. They explore dif-

ferent techniques for evening out I/O load, including balancing based on both

inverted list size and access frequency. These approaches are similar to the

term-allocation workload balancing techniques examined in Chapter 7, except

that only I/O load is considered, and the environment is a multi-disk rather

than a multi-machine one. Jeong and Omiecinski find that load balancing is a

significant issue in a term-partitioned system, and not one that is easily solved.

Their work examines skew in the distribution of query term occurrences, which

is linked to load imbalance in a term-partitioned system. They present uniform

and skewed query models, and examine the effect of different degrees of skew.

However, in their skewed model, the frequency ranking of terms in the query

set follows the frequency ranking of terms in the collection (that is, the most

frequent term in the query set is also the most frequent term in the collection),

whereas in real data sets, the correlation between the two is weak [Tomasic and

Garćıa-Molina, 1993, Baeza-Yates, 2005]. Again, no account is taken of caching

effects.

A summary of earlier work on parallel processing and information retrieval

can be found in Rasmusen [1991].

26

3.5.2 Empirical studies

The comparisons between document-distribution and term-distribution in the

earlier papers rely on simulation, whereas recent studies have involved experi-

ments on implemented systems. One such investigation is that of MacFarlane

et al. [2000]. They find that the document-distributed architecture scales well

with cluster size, whereas term distribution fails to scale at all, and underper-

forms even on small clusters. However, there are a number of deficiencies in their

experimental setup. Only 50 queries are used, which is too small a sample to

generalise results from, and also too short a run to properly explore caching and

parallelisation issues. A fixed collection of 1 GB is split amongst between 2 to 7

machines, meaning that as the cluster scales, the per-machine index shrinks; it

would be preferable instead (or in addition) to maintain per-machine collection

size as the cluster scales. Also, since each machine in the cluster has 128 MB of

main memory, the index can fit in main memory, even on a two-machine clus-

ter; however, it appears that experimental runs are made “cold,” thus leaving a

confusing mix of caching and disk effects. For instance, MacFarlane et al. find

that a document-distributed system scales better in cluster size with whole-topic

queries than with title-only ones. This is possibly an artifact of the fact that

whole-topic queries contain more repeated terms across the query set, which

means better caching when starting from a cold run; this in turn helps offset

the greater on-disk fragmentation that occurs with a higher degree of document

partitioning.

While MacFarlane et al. [2000] found in favour of the document-distributed

architecture, the implemented experiments of Badue et al. [2001] show term

distribution outperforming document distribution. The system implemented is

similar to that simulated in Ribeiro-Neto and Barbosa [1998]. In particular,

inverted lists are frequency-ordered, and only part of each list is returned from

the holding node to the receptionist. While this is certainly a desirable setup

from the point of view of the efficiency of term distribution, the complexity

of updates to a frequency-ordered index mean that document-ordering remains

a pragmatic choice, and the performance of term distribution with document-

ordered lists remains in question. In addition, the study of Badue et al. has

some methodological problems, in particular with the two query sets employed.

The first query set is 50 TREC queries, which is too small a query set to safely

generalise from. The second set consists of 2,000 artificial queries generated by

random choice from the collection vocabulary. Random choice results in a uni-

form distribution of query term occurrences, which the Badue et al. themselves

acknowledge artificially improves load balancing.

27

3.5.3 Other approaches

A quite different architecture referred to as “hybrid partition inverted files” is

presented by Xi et al. [2002]. Their approach incorporates aspects of both term-

partitioning and document-partitioning. Processing of lists is performed by the

receptionist, as in the term distributed architecture described above. How-

ever, inverted lists are divided into fixed-length chunks, which are distributed

amongst the cluster nodes. The goal is to balance the workload involved in

loading data off disks and transferring it back to the receptionist. The hybrid

partition inverted files architecture does not tackle the two main issues of the

term-distributed system, namely the processing bottleneck on the receptionist

and the amount of bandwidth required to ship inverted lists to the receptionist.

Moreover, the fragmenting of inverted lists removes the contiguity of data that is

term partitioning’s main advantage, resulting in a “worst-of-both-worlds” setup.

The terms “distributed information retrieval” are also used to refer to a

different problem domain, namely the aggregation of logically distinct and often

organisationally and locationally separate text databases, connected over a wide-

area network, such as the Internet. Federated search, as the problem domain is

also termed, is concerned with choosing which index or indexes a query should be

sent to, and merging the results that the different indexes produce [Callan, 2000,

Callan et al., 2003, Si and Callan, 2005]. Some interesting research is presented

by Lu and McKinley [1999] upon using concepts developed in federated search,

such as index specialisation and formulae for weighting and merging results

from disparate indexes, to build partial replicas specialised for common user

query groups or “topics” as part of a LAN-distributed index. These specialised

replicas are intended as a more flexible form of answer caching (see also Lu

and McKinley [2000] and Cacheda et al. [2004]). However, federated search is

beyond the scope of this thesis.

3.6 Overview of research contribution

The above sections have detailed the current state of research into distributed

information retrieval architectures, and provide the background to the investi-

gation described in the following chapters.

First, in Chapter 4, a methodology for performing rigorous and scalable ex-

periments upon implemented distributed query evaluation systems is developed

and described. The aim is to avoid the methodological deficiencies of previous

experimental regimes, as well as to provide a more realistic experimental frame-

work than those offered by simulation based upon analytical models. Attention

needs to be paid to a number of issues in developing such a methodology. These

28

include the scalability of the experimental results, the use and degree of pro-

cessing parallelism, the makeup of the query set, and controlling disk access

performance variability.

As has been described, the pipelined architecture ships the processing state,

consisting chiefly of accumulators, between nodes in the cluster. It is therefore

essential for the efficiency of the pipelined system that accumulator growth is

contained, and that accumulators are efficiently compressed for shipping. These

issues of accumulator handling are addressed in Chapter 5.

Next, the methodology developed in Chapter 4 is applied, and an exten-

sive experimental assessment of the document-distributed, term-distributed,

and pipelined architectures is carried out, with results presented in Chapter 6.

Suitable settings for variables such as accumulator limits and the degree of paral-

lelism are established experimentally. Then, with these settings decided, timed

runs are made on each of the three distributed architectures for clusters of 2, 4,

and 8 machines, and additionally on a monolithic baseline. These setups are run

against collections scaled homogeneously from a full 426 GB down to 1/64th of

this size, allowing for the exploration of several different varieties of scalability.

The results demonstrate that a term-distributed architecture with document-

ordered inverted lists and a centralised processing node faces a severe bottleneck

in processing, and as a result performs poorly, failing to scale at all with cluster

size. The results also show that pipelining performs and scales much better than

term distribution, but still falls well short of document distribution. Analysis of

these results demonstrates that, while pipelining achieves the disk I/O benefits

it promises, it is hobbled by serious workload imbalance.

The following chapter, Chapter 7, explores the issue of load balancing in

the pipelined architecture in detail. Load imbalance is shown to derive from

the skewed distribution of inverted list lengths and access frequencies between

different terms. Methods for assigning terms to nodes in order to even out

load are considered and evaluated, both in simulation and in actual runs. Such

techniques are demonstrated to narrow the performance gap with document-

distribution, but some load imbalance remains, and so the full potential of

pipelining’s I/O and memory usage benefits is still not achieved. A technique

for replicating high-workload terms on more than one node is therefore proposed.

Different degrees and depths of replication are examined, and the differing rout-

ing strategies that replication enables the system to employ are explored. It

is demonstrated that, with partial term replication and intelligent routing of

queries, the pipelined system’s load imbalance problems are substantially re-

solved, and the architecture is able to achieve marginally higher throughput

than document distribution.

Chapter 8 then takes the improved pipelining strategy devised in Chapter 7

29

and demonstrates its scalability. In addition, the partially-replicated pipelined

system is found to substantially outperform document distribution in a more

memory-limited environment. On the other hand, an examination of average

response times for the two architectures under varying workloads shows that

document distribution offers faster and more scalable response times at low to

medium workloads.

Finally, Chapter 9 gives an overview of the results of this research, provides

advice to the system implementor on which distribution architecture to choose,

and outlines directions for future research in this area.

30

Chapter 4

Experimental technique

Chapter 3 described the differing conclusions of previous research into the rela-

tive merits of document and term distribution. These differences underline how

important it is to design experiments carefully, especially when investigating the

merits of different distributed architectures. We must choose appropriate exper-

imental data; specify what the experimental variables are and which variable

is being measured in each experiment; minimise the variability that external

factors may cause in the results; and ensure the retrieval correctness of the

methods employed even when focused on efficiency. These issues of experimen-

tal technique are the subject of the current chapter.

4.1 Queries

Finding a suitable query set is a perennial problem in information retrieval

efficiency research. The query set must be large enough to allow a sufficiently

long execution period, and an adequate mix of different queries, for efficiency

results to be reliable. The set also needs to be either real or realistic, so that what

is being modelled in experiments can be applied to what would be experienced

in real use. And it should be appropriate to the test collection being used. An

“appropriate” query set is, above all, one that is from the same information

domain as the collection; legal queries, for instance, are not appropriate for a

collection of medical documents. It is also highly desirable that the queries

were formulated at a similar time to when the collection was created; queries

concerning an event that occurred in 2005 are a poor match for a collection

gathered in 1998.

31

4.1.1 Appropriate and inappropriate query sets

A large and realistic query set is most easily obtained from a real-world search

engine’s query log. A number of search engine query logs are readily available

and have been studied in the literature, such as the Excite97 and AltaVista

logs [Jansen et al., 1998, Spink et al., 2001, Silverstein et al., 1999]. However,

the logs of whole-of-web search engines may not be appropriate to a particular

test collection, particularly if the collection is domain-specific and drawn from

a different period than the logs.

Much current research uses the TREC GOV2 collection, described in Section 2.4,

which is to date the largest of the TREC collections. Unfortunately, the GOV2 col-

lection is poorly matched to the publicly available search engine logs. First,

GOV2 is a domain-specific collection, crawled solely from United States govern-

ment web sites. And second, the GOV2 collection was crawled in early 2004,

whereas most of the readily available real-world query logs date back to the late

1990s. The Excite97 query log, for example, consists of one million-odd queries

submitted on a single day in September 1997. The domain mismatch with GOV2

can be seen from the fact that the five most popular queries in Excite97 (which

all happen to be single-word queries) are “sex”, “yahoo”, “chat”, “playboy”,

and “porn”. The time mismatch can be seen from the fact that the most pop-

ular multi-word query is “princess diana” (the query log dates from ten days

after her funeral).

From the viewpoint of efficiency experiments, the semantic appropriateness

of the queries to the indexed collection is not directly important. However,

inappropriate query sets can have quite different statistical properties from ap-

propriate ones, and this does have a critical impact upon efficiency results. The

query terms of an inappropriate log will on average be less frequent in the collec-

tion than those of an appropriate query set. As a result, inappropriate queries

will on average find fewer matching documents than appropriate queries do.

The performance characteristics of a system will, therefore, be different with

inappropriate and than with appropriate query sets: not only will the system

be able to process more inappropriate than appropriate queries per second, but

also the load upon different parts of the system will be different.

The problems associated with an inappropriate query set can be illustrated

by taking the Excite97 query log and comparing its statistical properties when

applied to the GOV2 collection against those when applied to a collection to which

it is (more) appropriate. A suitable collection for the latter purposes is the wt10g

collection from TREC, used in the TREC-9 and 2001 TREC Web Tracks. The wt10g

collection contains 10 GB of text extracted, with an eye to enhancing coherence

and document quality, from the 100 GB VLC2 collection (also known as wt100g)

32

Term
Collection

wt10g GOV2

sex 0.0187 0.0139
free 0.1359 0.0670
nude 0.0020 0.0001
pictures 0.0254 0.0060
pics 0.0023 0.0002

Table 4.1: Term ft as a proportion of number of documents, over the TREC

collections wt10g and GOV2, for the five most frequent terms in the Excite97

query log.

[Soboroff, 2002, Bailey et al., 2003]; we choose wt10g in preference to VLC2 due to

its improved document quality. The VLC2 collection itself was crawled in 1997,

from the web as a whole, not restricted to any particular set of domains. On

both date and domain, therefore, wt10g is a better match for Excite97 than

GOV2.

Table 4.1 takes the five most frequently occurring query terms from the

Excite97 log and compares the proportion of documents they occur in for each

collection. In all cases, the terms are less common in GOV2 than in wt10g, ranging

from two-thirds to a twentieth of the frequency. It is therefore to be expected

that the query log would take less time (adjusting for collection size) to process

against the former, inappropriate collection than against the latter, appropriate

one. To test this hypothesis, a subcollection was extracted from the GOV2 col-

lection containing the same number and similar composition of documents as

wt10g. Monolithic indexes of both collections were built, and 10,000 Excite97

queries were run against them. The run took 16% longer against wt10g than

against the GOV2 subcollection.

A characteristic of collection inappropriateness that is particularly relevant

to distributed experiments is its effect on term workload skew. The workload

Lt of a term t is the amount of work that t imposes upon the system during the

processing of a query set. A term’s workload can be measured as the product

of the byte length of the term’s inverted list in the index, Bt, and the term’s

frequency in the query set, Qt. Thus, Lt = Bt · Qt. Hence, the proportional

workload of t in Q can be defined as:

L̄t =
Lt

∑

t∈TQ
Lt

where TQ is the vocabulary of the query set. Now, since both natural collec-

tions and natural query sets are well known to have a skewed term frequency

distribution [Baeza-Yates, 2005], the workload of a query set’s vocabulary will

33

wt10g GOV2

term weight term weight
free 0.062 free 0.035
new 0.028 new 0.031
home 0.018 home 0.022
one 0.015 search 0.017
sex 0.015 sex 0.013

Table 4.2: Proportional workload of five most costly terms for the second 10,000

queries of the Excite97 log, when run against the wt10g and GOV2 collections.

also be highly skewed.

Table 4.2 provides the workload figures for the five highest-workload terms

in a run of 10,000 Excite97 queries against the two collections. Note the much

greater term workload skew for wt10g when compared to GOV2, in particular for

the most frequent term, “free”, which accounts for 6.2% of the total work-

load when processing the query set against the former collection, but only 3.4%

against the latter. Lessened term workload skew in inappropriate query sets

is particularly distorting for experiments on term-partitioned indexes, as it di-

rectly affects workload balance between nodes. The issue of workload balance

is examined in detail in Chapter 7. For now, it is sufficient to note that, intu-

itively, a random partitioning of terms with higher workload skew is likely to

result in greater workload imbalance than a random partitioning of terms with

a lower workload skew. Therefore, using an inappropriate query set is likely to

create an unrealistically balanced workload.

4.1.2 Synthetic query set generation

Section 4.1.1 has demonstrated the importance of using an appropriate query

set in experiments into the efficiency of distributed query evaluation architec-

tures. Ideally, a real-world query log from the same domain and time period as

the sample collection should be used. If such a query log is not available, how-

ever, it is possible to synthetically generate one with the appropriate statistical

properties.

Synthetic query generation is not a new idea in efficiency research. Indeed,

a number of previous studies in distributed query evaluation have employed

synthetic query sets [Tomasic and Garćıa-Molina, 1993, Jeong and Omiecinski,

1995, Badue et al., 2001]. Amongst the attractions of synthetic queries is the

possibility of smoothly varying the statistics of a query set in order to see the

effect these variations have on performance: to investigate, for instance, what

happens if queries are longer or shorter, or contain rare or frequent terms.

34

However, if realistic statistical properties are to be achieved, synthetic query

set generation needs to be undertaken with care. Consider, for instance, a

method that generates queries by randomly selecting terms from the index’s

vocabulary. Such a method produces only incidental skew in the query term

frequency distribution, leading to an artificially balanced workload distribution

amongst the nodes of a term-partitioned system.

For research into the efficiency of different distributed text query evaluation

architectures, a synthetic query set should match an appropriate real-world

query log on the following criteria, in decreasing order of importance:

1. Query set term frequency distribution.

2. Collection term frequency distribution.

3. Query length distribution.

4. Query term co-occurrence distribution.

Note that query coherence is not a requirement. That is to say, it does not

matter if the synthetically generated queries “make sense” to a human reader.

If the experiments involve phrase queries, query coherence might indirectly be

important, as only queries making some sort of (syntactic, if not semantic) sense

are likely to occur as phrases. However, for the non-conjunctive ranked queries

used in all the experiments in this thesis, queries are merely bags of terms with

certain statistical properties.

The method proposed to meet the above requirements is one of synthetic

query set generation by translation based on term frequency. The generation

process works as follows:

We wish to generate a synthetic query set Q′ that is appropriate to a target

collection D′. We take an existing query set Q (the source query set) and a

collection D (the source collection) for which Q is appropriate. Let TQ be the

set of terms occurring in Q, ND be the number of documents in D, and fD,t be

the number of documents in D in which term t appears. Similarly, let TD′ be

the set of terms occurring in D′. The key step is, for each t ∈ TQ, to randomly

pick a term t′ ∈ TD′ such that fD,t/ND ≈ fD′,t′/ND′. The chosen term t′ then

becomes the translation of t.

The above process maintains identical query length and query term fre-

quency distributions between Q and Q′, and similar ft distributions, satisfying

the three most important criteria for synthetic query set generation. To also

preserve the same query term co-occurrence rate in a deterministic way is very

difficult, given that co-occurrence needs to matched up across multiple tuples of

terms. Nevertheless, there are some heuristic approaches that provide for rea-

sonably similar co-occurrence rates. The problem can be stated as follows. Term

35

spice sex ⇒ contra vhs
cartoon art ⇒ proposition claims

star trek ⇒ especially eliminated

Figure 4.1: Sample query translations. Excite97 queries are listed on the left; on

the right are their SYNQ equivalents. For instance, the term “sex”, which occurs

in 1.87% of wt10g documents but only 1.39% of GOV2 documents, is translated

to “vhs”, which occurs in 1.78% of GOV2 documents.

co-occurrence in a query indicates semantic relatedness between the terms, and

thus predicts higher-than-random co-occurrence between terms in the collection.

However, the synthetic query generation algorithm described above will by itself

only provide random co-occurrences. Therefore, it needs to be enhanced with a

heuristic to increase the co-occurrence rate.

Assume that translation is performed, and query term co-occurrence re-

solved, on a query-by-query basis. The problem can then be more formally

stated as follows. Each query q ∈ Q consists of distinct (possibly repeated)

terms t1 . . . tn (tn ∈ TQ). At the start of the processing of q, suppose that terms

t1 . . . ti (0 ≤ i ≤ n) already have translations t′1, . . . , t
′
i (arrived at from trans-

lating earlier queries), and others ti+1 . . . tn do not. Let Γ(D, q) be the number

of documents in collection D that all terms in q co-occur in. If Γ(D, q) 6= 0, and

Γ(D′, t′1 . . . t′i) 6= 0, then the goal is to choose t′i+1 . . . t′n such as to heuristically

maximise Γ(D′, q′).

The heuristic method used to boost translated query term co-occurrences is

as follows. Process each term tj ∈ {ti+1 . . . tn} in turn. For each tj , randomly

select three candidate translations, t′j
1
, t′j

2
, and t′j

3
. Then choose the translation

t′j
x

which maximises Γ(D′, t′1 . . . t′i, t
′
j
x
). If ∀x, Γ(D′, t′1 . . . t′i, t

′
j
x
) = 0, then con-

tinue randomly selecting candidate translations t′j
y

until Γ(D′, t′1 . . . t′i, t
′
j
y
) > 0

or seven more attempts have been exhausted. Then, add t′j to t′1 . . . t′i, and

recursively process t′j+1, until all terms in q are translated.

For the experiments reported in this thesis, the target collection D′ was GOV2,

the source collection D was wt10g, and the source query set Q was Excite97. The

synthetic query set Q′ generated by this process is referred to as SYNQ. Figure 4.1

shows some sample translations, illustrating the fact that the translated queries

generally do not make semantic sense. However, taken with the target collection,

they do closely match the source query set, taken with the source collection, in

the statistical aspects that are important for distributed efficiency experiments.

36

4.2 Query parallelism

Enabling query processing parallelism increases the throughput even of a single-

processor monolithic system. While one query is waiting for a disk read to

complete, computation can continue on another that has its required data in

memory. Additionally, modern CPU architectures increasingly support paral-

lelised processing, even on single-chip systems. For instance, the processors used

in the experiments for this thesis support hyper-threading; and dual-core CPUs

seem likely soon to be ubiquitous.

Document-distributed processing is akin to multiple simultaneous monolithic

evaluations, so it gains a similar boost from parallelisation. In addition, query

parallelism in a document-distributed system allows for useful work to continue

during the latency involved in the distribution of queries and receipt of results

over the network; in a strictly serialised system, this would be idle time for indi-

vidual nodes. Experimental results reported in Chapter 6 show that a threefold

increase in throughput can be achieved on an 8-node document-distributed sys-

tem by allowing maximal query parallelisation.

Parallelisation is even more important for term-distributed architectures. In

a serialised term-distributed system, only the nodes that hold information for

the terms in each query are involved during the processing of that query; the

rest remain idle. If the cluster has k nodes, and the average number of terms per

query is |q|
avg

, and assuming for simplicity that no two terms in any query occur

on the same node, then in a serialised term-distributed system, only |q|
avg

/k of

the system is used on average for each query; and since typical figures for the

experiments reported here are k = 8 and |q|
avg

= 2.6, it can be seen that

system underutilisation is severe. Indeed, since different terms’ inverted lists

have greatly differing lengths, the actual underutilisation is even greater than

this formulation suggests, as some nodes will finish their work before others and

then sit idle for the remainder of the query’s processing.

The waste of resources in serialised processing is more severe again for

pipelining. A given query bundle can only be at one single evaluator node

in a pipelined system at a time. In a serialised pipelined system, therefore,

only 1/k of the system will be in use at any one time, even without making an

allowance for network latency. Experimental results given in Chapter 6 show

that on an 8-node system, maximal parallelisation allows pipelining to achieve

more than seven times the throughput of a serialised system.

For this reason, the efficiency experiments in this thesis are performed in

an environment that allows parallelised processing. The implications of this

for performance calculation and experimental methodology are examined in the

following subsections.

37

4.2.1 Throughput versus average response time

There are two main measures of the performance of an IR system. The first is

throughput, the average number of queries the system is able to process in a unit

of time. The second is average response time, the average elapsed time between

the receipt of a query by the system and the dispatch of the query’s result to

the user. If query processing is serialised, and assuming that there is no delay

between one query completing and the next one starting, then the relationship

between throughput and average response time is a simple one: throughput is

the inverse of average response time. More formally, let NQ be the number of

queries processed, and s be the amount of time required to process them; then

τ = NQ/s

is the system’s throughput, and

ρ = s/NQ = 1/τ

is the average response time.

If parallelised processing is allowed, the relationship between throughput

and average response time is not so straightforward. If more than one query

is processed at the same time, throughput benefits from the parallelisation: for

instance, computation for one query can continue while another query is waiting

on disk access. Nevertheless, some contention for resources will occur, and so

the elapsed time to process each query will increase. As a result, there is a

trade-off between throughput and average response time.

In a real-world system, queries arrive at varying intervals, and the number of

queries in process at any given time is also variable, making the formulation of

the relationship between throughput and average response time complex. In an

experimental environment, in contrast, a situation can be enforced in which the

number of queries in process at any given time is kept constant; as soon as one

query currently in the system finishes, another starts. The experimentally-fixed

number of queries simultaneously in process in the system is referred to here as

simulq. The relationship between throughput and average response time, ρ, in

a parallelised system can be stated as:

ρ = (s · simulq)/NQ = simulq/τ (4.1)

The absolute throughput figure τ provides a good metric for the relative per-

formance of different architectures with the same size of collection and number

of machines. However, it is misleading to directly compare absolute throughput

38

figures for different collection and cluster sizes. The fact that configuration A

has higher throughput than configuration B tells us very little if configuration

A has more machines, or a smaller collection: it is to be expected that through-

put should increase in such a situation. The more important question is, has

throughput increased by as much as might be hoped, given the change in con-

figuration? To make answering this question easier, and comparisons between

different configuration more straightforward, the concept of normalised through-

put or τ̄ is introduced. Normalised throughput is absolute throughput adjusted

for the size of the collection in terabytes, T , and the number of processing

machines in the cluster, k, and can be stated as follows:

τ̄ = (T · τ)/k = (T · q)/(s · k) (4.2)

This expression has units of “Terabyte queries per machine second,” and repre-

sents a collection-size and cluster-size independent measurement of throughput.

Combining Equations 4.1 and 4.2, average response time can be derived from

normalised throughput as follows:

ρ = (t · k)/(T · τ̄) (4.3)

The focus of the research in this thesis is upon maximising normalised

throughput. Maximal throughput is achieved by increasing the number of simulq

until throughput plateaus; at this point, parallelisation benefits start to be out-

weighed by excessive load upon the system. Of course, workloads on a real-world

system fluctuate over time; what is being tested here is the peak throughput

that the system is able to handle. The precise number of simulq that is re-

quired to achieve maximum throughput for the experimental configuration is

empirically determined in Chapter 5.

Given the trade-off between throughput and response time formulated in

Equation 4.1, a statement such as “document partitioning achieves faster query

response time than pipelining” requires qualification. In a fixed simulq environ-

ment, if system A has a higher throughput than system B for a given config-

uration and simulq, then system A also necessarily has a lower average query

response time than system B for that configuration and simulq. It is possible

that at a lower simulq, system B may have a higher throughput (and therefore

lower average response time) than A. And it is certainly true that, in a serial

or single-simulq environment, document partitioning’s natural parallelisation

will provide a faster query response time that pipelining’s inherent serialisation.

However, talking about query response times in isolation is misleading; it is also

necessary to specify what level of query throughput the system is supporting.

This trade-off between response time and throughput is revisited in Chapter 8.

39

4.3 Rank-biased dissimilarity

Efficiency-based IR research is not directly concerned with retrieval effective-

ness. Indirectly, however, it is of great importance to verify that changes in-

troduced for the sake of efficiency do not reduce retrieval effectiveness, or if

they do, that the reduction is recognised, quantified, and justified as acceptable

for the increase in efficiency gained. After all, if the quality of results is alto-

gether ignored, an arbitrarily fast query evaluation system can easily be created.

(Indeed, the author has inadvertently implemented a number of such systems

in the course of this project.) Assessments of effectiveness therefore act as an

important verification tool upon the retrieval correctness of efficiency-oriented

techniques.

As described in Chapter 2, retrieval effectiveness is normally assessed by

using a metric such as MAP to compare document rankings returned for a

given collection and query set against a standard set of relevance judgments.

There are times, however, when it is necessary to validate efficiency-oriented

modifications against a collection or query set for which relevance judgments do

not exist. In such cases, effectiveness assessments can be augmented by the use of

a dissimilarity metric. The idea of a dissimilarity metric is to measure the degree

of difference between two sets of ranked results. For verification of efficiency

changes, this means measuring the difference between results obtained before

and after the changes were made. If a difference is found, the dissimilarity metric

cannot say whether the difference constitutes an improvement or a deterioration.

Nevertheless, even if we assume that all differences involve a degradation in

retrieval effectiveness, the dissimilarity metric provides an upper bound on the

degree of the degradation.

A good dissimilarity metric has to meet a number of criteria. First, it should

weight large changes in the ranking of any particular document more heavily

than small changes. Second, because high ranked documents are of more interest

to the user than low ranked ones, a good dissimilarity metric should weight

changes towards the top of the rankings more heavily than changes towards the

bottom, a requirement which other commonly-used measures such as Kendall’s

tau [Kendall, 1938] and Spearman’s rank correlation coefficient [Moroney, 1951]

do not satisfy. And third, a good dissimilarity metric should handle documents

that occur in one ranking but not the other in a reasonable way. Note that it is

not a requirement that a dissimilarity metric should take notice of the precise

scores given to each document.

The dissimilarity metric used in the current research is defined as follows.

Let R(r) be the set of documents in the first r positions of some ranking R; and

let ℓ(R, r, x) be the ranked position in ranking R of the document x, or r + 1 if

40

x 6∈ R(r). The dissimilarity between two rankings R1 and R2 is calculated as

follows:

dissim(R1, R2, r) =
∑

x∈R1(r)∪R2(r)

∣

∣

∣

∣

1

T + ℓ(R1, r, x)
−

1

T + ℓ(R2, r, x)

∣

∣

∣

∣

where T ≥ 0 is a constant that determines the weighting between differences

at the top of the ranking and those at the end of it. In this thesis, T is set

to π (a value both reasonable and whimsically attractive), and r, the depth

to which results are compared, is set to 1,000. It is more convenient to work

with a normalised version of this metric, where the dissimilarity is expressed

as a fraction of the score that would be obtained from completely disjoint lists.

Thus, a normalised dissim of 0.0 indicates that two rankings are identical, and

of 1.0 that they are entirely different.

4.4 Scalability

One of the most important questions about any proposed distributed query

evaluation architecture is how well it scales, particularly when the resources

available for use in the experimental evaluation are only a fraction of those

deployed in a commercial web-scale search engine. In order for results obtained

in the moderately-sized system used here (eight machines and half a terabyte

of data) to be extrapolated with any confidence to larger datasets and more

powerful environments, it is essential that experiments are carefully designed to

answer the question of scalability.

There are two main dimensions of scale for an information retrieval engine:

the size of the collection being indexed; and the amount of computing resources

being employed. (In a fixed simulq environment, a third dimension, the rate of

query arrivals, is determined by these two; in Chapter 8, we will examine system

behaviour under varying query arrival rates.) Therefore, scaling can occur in

three different ways:

1. increasing the size of the collection, while holding the computing resources

constant;

2. increasing the computing resources, while holding the size of the collection

constant; and,

3. increasing both the computing resources, and the size of the collection,

holding the ratio between them constant.

Experiments along each of these directions of scale address a different ques-

tion about real-world usage. The first direction of scale addresses how each

41

architecture handles increasing data load on fixed hardware. The second ad-

dresses how well each architecture is able to make use of additional hardware

resources to boost performance. And the third addresses how likely it is that

the results achieved for an experimental setup of R computer resources han-

dling a collection of size S will scale to a real-world deployment of nR machines

handling a collection of size nS. The last direction of scale is the most crucial.

The scaling of computer resources is potentially a multi-dimensional propo-

sition. Main memory, CPU speed, disk speeds, and so forth can all be separately

varied. To simplify this potentially unmanageable situation, the unit of com-

puting resource is fixed as a “machine”, and scaling computer resources means

adding more (identical) machines to the cluster. Chapter 8 will examine the

effect of scaling one particular aspect of hardware configuration, namely the

amount of main memory available to the system.

Collection size is the other experimental component that can be scaled. Here,

the temptation is to make use of whatever real world collections of different

sizes are available. Doing so has the specious attraction of also running the

experiments on different types of collections: but it is precisely because of these

differences that the temptation must be avoided. In scaling the collection size, it

is only the size that should be varied, and not the composition of the data. If the

makeup of the collection also changes, then two variables have been introduced

instead of one, and it becomes difficult to determine which of these variables is

the cause of differences observed in results. In the experiments in this thesis,

smaller collections are created by extracting fractions of the full GOV2 collection,

with care being taken to select documents at intervals from the repository, rather

than taking the whole fraction from a contiguous segment of documents.

4.5 Controlling disk access variability

The current research assumes an environment in which indexes are too large

to fit into memory, and are substantially disk-resident and disk-accessed at run

time. It is postulated that in a disk-dependent environment, the superior disk

access characteristics of pipelining will give it a performance edge over document

distribution. Because the question of disk access behaviour is so central to the

current research, it is essential that variability in disk performance is minimised.

Given that the same hardware is used for each experiment, disk performance

is affected by two main factors. The first is the location of data on disk, and

the second is its fragmentation. Disk location refers to whether data is placed

on disk blocks that are closer to the spindle or to the rim of the disk platter.

Because the rotational speed of the disk is constant, and the number of blocks

per circumference is higher towards the rim of the disk than it is toward the

42

centre, it follows that rimwards blocks are read faster than spindlewards ones.

On the systems used in the current research, the read speed ratio is around

7/4. Additionally, if a file is highly fragmented on disk, then read performance

deteriorates, as the disk head has to seek to different physical locations to access

sections of a file that are logically adjacent. With these two factors combined,

there is a very large disk read performance difference between well placed and

poorly placed data. Experiments revealed that a system answering queries on a

monolithic index of the full experimental collection spent 25% of its time waiting

for disk I/O to complete when the data was poorly located, but under 10% when

the data was in a better configuration.

One method of controlling disk variability is to create large, empty files once

at the start of the experimental run, and then write each set of data into these

files. In UNIX terms, this means opening the files without setting the O TRUNC

flag. However, this method is not in itself adequate for a distributed system, as

it does not ensure that files on different machines are similarly located. Note

that it is not, in general, possible with modern file systems to explicitly specify

which blocks a file should occupy.

A better method of controlling disk variability, and the one employed in this

thesis, is to set aside a dedicated experimental partition on each machine. The

dedicated partition should be only slightly larger than the largest data set that

needs to be deployed. The partition should be located on the same physical

blocks on each machine; fortunately, it is generally possible to specify which

blocks a partition should occupy. To obtain maximum transfer rates, the blocks

chosen should be the rimwards-most ones. This is the setup used for all the

experiments described in this thesis. Additionally, when each set of files was

installed, a check was made (using a filesystem-specific utility) to ensure that

no large block gaps had been created during installation. If a gap larger than

a given size (0.5 GB was the size selected) had been created, then the files were

deleted and reinstalled.

4.6 Summary

This chapter has described the experimental techniques developed during the

course of the research presented in this thesis. The importance of using a sta-

tistically appropriate query set in efficiency experiments has been described,

and a method for synthetically generating such a query set by translation has

been presented. The use of simulq as a tuneable experimental parameter al-

lows for query parallelism, and with it system load, to be set at the level that

achieves maximum throughput for each distributed architecture. In the pres-

ence of query parallelism, there is a trade-off between throughput and average

43

response time; setting simulq to a level that maximises throughput necessarily

has a cost in response time. The question of scalability is of particular impor-

tance to distributed search engines, and the scaling of collection and cluster size

need to be explored both separately and in conjunction. A dissimilarity metric

is presented, which is preferable to those commonly used in the literature in

that it weights changes at the top of the ranking more heavily, thus reflecting

user priorities; this dissimilarity metric can then be deployed to ensure that the

quality of results is maintained while efficiency changes are made. And finally,

the disk access characteristics of different architectures are crucial to this thesis,

and so controlling disk performance variability is essential; the use of dedicated

experimental partitions for this purpose has been proposed as a best-practice

technique. These techniques provide a firm foundation for the experimental re-

sults presented in Chapter 6. However, before proceeding to these experiments,

it is necessary to deal with the issue of accumulator handling in the pipelined

system, which is the topic of Chapter 5.

44

Chapter 5

Accumulator compression

and pruning

As described in Chapter 3, the pipelined architecture ships the state of each

query’s evaluation between the nodes of the cluster. The great bulk of this data

is made up of accumulators holding partial document similarity scores. The

current chapter explores methods for minimising the number of these accumu-

lators, and the size they take up once serialised for shipping. The first section

examines techniques for compressing the shipped accumulators. In the second

section, a novel dynamic accumulator pruning method is described. As will be

seen in Chapter 6, the accumulator pruning technique benefits the throughput

of all architectures. Finally, the third section calculates an upper bound on the

volume of data that the pipelined architecture needs to ship between nodes once

these accumulator compression and pruning techniques have been applied.

5.1 Accumulator compression

The great bulk of the data shipped in query bundles in the pipelined system

consists of the partially-evaluated accumulators. There is a cost here both in

bandwidth used, and in processor time to serialise the accumulators for shipment

and unserialise them on arrival. If growth in accumulators is not constrained,

then the number of accumulators can reach the number of documents in the

collection, and in practice will usually be a non-trivial fraction of this. The full

GOV2 collection has some 25 million documents. If each accumulator is repre-

sented as a 4-byte document number and a 4-byte floating-point accumulated

score, and if (say) around 7 million accumulators have to be shipped for the

more expensive queries, then over 55 MB of data has to be encoded, shipped,

45

and decoded with each query bundle. For a system that is aspiring to process

as many as 100 queries per second (as shown later), this is an impossibly large

amount of data to be handling. Existing query pruning schemes propose that

the number of accumulators can be limited to between 1% to 5% of the num-

ber of documents in the collection. However, even this fraction involves a large

amount of data transfer; and, as is discussed later, there are some problems

with existing methods. Therefore, space and processing optimisations in the

handling of accumulators in query bundles will be of great importance to the

performance of the pipelined system.

An accumulator stores two items: a document number, and the partial sim-

ilarity score for that document. The space taken up in query bundles by doc-

ument numbers can be reduced by storing them as document gaps, and then

encoding them. Since Zettair uses the vbyte encoding scheme for its inverted

lists (see Section 2.3), it is convenient to also use such a scheme for the accumula-

tor document numbers. Taking 100,000 accumulators as the target accumulator

set size (for reasons that will be explained later) and a collection with 25 mil-

lion documents, the average document gap is around 250, and experiments show

that the average size of a vbyte-encoded difference is 1.6 bytes, compared to 4

bytes for the unencoded document numbers.

The space taken in query bundles by partial document scores can be reduced

by quantising them to integer values of a fixed bit size. Quantisation is not a

new idea in the field, and has previously been employed on document lengths

[Moffat et al., 1994] and on pre-calculated wd,t values in impact-ordered inverted

lists [Anh et al., 2001]. Quantisation works as follows. Given a set of numerical

values that are to be quantised, let L be the lowest value in the set, and let U be

the highest value. Thus, L to U defines the range of quantisation. Let k be the

number of distinct values available after quantisation; for instance, if quantising

to a single byte, k = 28. The range L to U is divided up into k sub-ranges or

buckets; each original value is assigned the number of the bucket whose range

it falls into as its quantised value. Bucket range sizes can be assigned in a

number of ways, including uniformly (that is, each bucket’s range is the same

size), or geometrically, to allow for greater precision at either the high or the

low end of the range. Uniform quantisation is the simplest, and is the approach

pursued here. Using uniform quantisation, the quantised value v̄ of v in the

range 0 . . . k − 1 can be found using the formula:

v̄ =

⌊

k ·
v − L

U − L + ǫ

⌋

(5.1)

where ǫ is an arbitrarily small positive value, introduced to ensure that v̄ = k−1

when v = U .

46

Metric
Accumulator representation
Unquantised Quantised

Mean Average Precision 0.2368 0.2369
Dissimilarity – 0.0045

Table 5.1: The effect of uniform quantisation of accumulators shipped in query

bundles in the pipelined system. Quantisation is to 256 distinct values (that

is, the largest amount representable by a single byte). The collection is GOV2.

Effectiveness is measured by mean average precision, using TREC topics 701-

750 and the corresponding 12-Nov-04 qrels. Dissimilarity is measured as the

dissimilarity between the two runs, using the first 100 queries of SYNQ and the

normalised rank-biased dissimilarity metric, calculated to depth 1,000 results.

An accumulator limit of 100,000 (see later) was employed.

Table 5.1 shows the results in effectiveness and dissimilarity of quantising

accumulator scores down to 1 byte or 256 distinct values before shipping them

in the query bundle. This might seem a drastic loss of granularity, but (perhaps

surprisingly) it has no cost in effectiveness. Since mean average precision is

based upon a binary notion of relevance, one might suspect that the metric could

be hiding reorderings of binary-relevant documents. However, the dissimilarity

result dispels this notion: it confirms that not only does quantisation have little

impact on effectiveness, it also makes very little difference to the ordering of

results.

Quantisation and dequantisation can be implemented efficiently. The calcu-

lation of uniform quantisation is computationally simple, as can be seen from

the formula itself. Dequantisation is not simply the inverse of the quantisation

function, due to the downwards-truncation of quantised values. Instead, the de-

quantised value v′ of bucket v̄ is taken as the mean of the inverse quantisation

of that and the next buckets’ values, using the formula:

v′ =
(2v̄ + 1)(U − L + ǫ)

2k
+ L (5.2)

But since only a small number of distinct integer values are involved, it is highly

efficient to pre-calculate all k = 256 dequantised values for a given accumulator

set’s U to L range and keep them in a lookup table.

Taking document gaps and using a vbyte encoding scheme reduces the

amount of space required for each document number to an average of around

1.6 bytes, and the quantised similarity scores require only a single byte. These

techniques therefore reduce the size of each serialised accumulator from 8 bytes

to an average of 2.6. Section 5.2 will examine methods of reducing the total

number of accumulators that need to be shipped.

47

5.2 A new approach to accumulator pruning

In Chapter 2, the concept of query or accumulator pruning was introduced,

and the two best-documented query pruning methods, the Quit and Continue

schemes, were discussed. Recall that both the Quit and Continue schemes

enforce an accumulator limit by changing their processing mode when this limit

is reached. Initially, in both schemes, every new document pointer creates a

new accumulator (OR-mode). When the accumulator limit is reached, the Quit

method stops processing pointers, whereas the Continue method switches to

allowing the scores for existing document accumulators to be updated, but not

creating any new accumulators (AND-mode). The question remains of precisely

when the accumulator limit is checked and the switch in processing modes is

made. One option is that the switch be made only at the end of processing a

term’s inverted list, which will be termed the Full variant. Alternatively, the

switch in processing modes could be made as soon as the accumulator limit is

reached, even if this is in the middle of a term’s inverted list; this will be termed

the Part variant. With these variants, there are four different possible query

pruning schemes: Quit-Full , Quit-Part , Continue-Full , and Continue-Part .

Each of the Full and Part variants has its potential problems. The Part

variant strictly enforces the accumulator limit, but leads to an evaluation bias.

For the term in whose inverted list the mode switch occurs, pointers occur-

ring before the switch will be able to create new accumulators, whereas those

occurring after it will not. Documents occurring earlier in the collection are

therefore favoured over documents that occur later; and since the ordering of

documents is arbitrary with regards to relevance, the retrieval effectiveness of

the system is degraded. In the extreme, for a single-term query where the num-

ber of documents in which that term occurs is greater than the accumulator

limit, later documents will not appear in the results at all, no matter how high

their similarity score would have been under an exhaustive evaluation.

The Full variant avoids the inequitable treatment of documents occurring

in different sections of the collection by deferring the processing mode switch

to the end of the inverted list during which the accumulator limit was reached.

However, from the point of hitting the accumulator limit up until the end of the

list, new accumulators can still be created. This means that in the Full variant,

the accumulator limit can and generally will be exceeded or bursted , often by

a large amount. The problem is exacerbated if the terms in the query are high

ft ones, or alternatively in short queries where a term with an ft below the

accumulator limit is followed by a high ft one. These types of queries are more

common in the web-style queries that are the focus of contemporary research

than in the longer, more discriminating traditional IR queries used in Moffat and

48

Zobel [1996]. Obviously, the bursting of the accumulator limit is particularly

undesirable in a pipelined system.

Both the degraded effectiveness caused by the Part variant of the Continue

strategy, and the bursting of the accumulator limit in the Full variant, were

discovered in the course of the experiments carried out in this project, and led

to the development of a greatly improved, adaptive query pruning scheme.

5.2.1 Adaptive pruning

There are three criteria that a good accumulator pruning scheme should meet.

The first is that it should avoid bursting the accumulator limit. The second is

that it should treat each document in the collection equitably. And the third

is that accumulators, as a scarce resource, should be apportioned at any par-

ticular time to the documents that seem most likely to make the final ranked

results. We have seen that the Full variant of the Quit and Continue schemes

fails the first criterion, and the Part variant fails the second. The third criterion

is more difficult to assess, but reflection suggests that to meet this criterion, a

system should be able to remove an accumulator from an existing, low-scoring

document and give it to a new, high-scoring one. It is true that, since terms are

processed in reverse ft order, and since ft is inversely related to term weight,

typically pointers in earlier lists will have more weight than pointers in later

ones. However, there will be exceptions: a single occurrence of a low-ft term in

document d1 may be outweighed by multiple occurrences of higher-ft terms in

document d2, and in this instance it would be desirable (assuming the accumu-

lator limit had already been reached) to remove d1’s accumulator and allocate

it to d2 instead.

Of course, the reassignment of accumulators from existing, low-scoring doc-

uments to new, high-scoring ones is not difficult to perform if efficiency is not

an issue. One could, for instance, keep the accumulators in a heap, in addition

to a lookup or merge structure, and always compare candidate new accumula-

tors against the lowest-scoring existing one. However, the processing of each

list would change from O(n) to O(n log n) complexity. Indeed, even amongst

linear-time operations, inverted list processing is such a central part of query

evaluation, and involves such a large amount of data, that computational sim-

plicity and efficiency is imperative.

A new query processing regime is proposed that meets the aforementioned

three criteria (limit enforcement, equity, and effective allocation), as well as

being computationally efficient. In the new regime, a partial document score

threshold v is maintained. As the inverted list It for each term t is processed in

merge-wise fashion against the existing accumulators list A, new accumulators

49

Algorithm 2 : Processing ranked queries

Input: a set of query terms t, their collection frequencies ft, their inverted lists
It, an accumulator limit L, and a function contrib which calculates a similarity
contribution from ft and fd.t.

1: assign A← {}
2: for each term t, in increasing order of ft do
3: assign v as described in Algorithm 3 below.
4: for each document d in A ∪ It do
5: if d ∈ It then
6: assign c← contrib(ft, fd,t).
7: else
8: assign c← 0
9: if d ∈ A then

10: assign c← Ad + c
11: if c ≥ v then
12: assign Ad ← c and A← A ∪ {Ad}
13: else if d ∈ A then
14: assign A← A− {Ad}
15: pause periodically to reevaluate v, as described in Algorithm 3 below.

Output: a set of approximately L accumulator values, not yet normalised by
document length

are created only when their initial score is greater than or equal to v. At the

same time, existing accumulators whose score is below v are removed. The

threshold v can therefore be used as a dynamically tuneable parameter to help

the system maintain its accumulator limit L. If it looks like the limit will be

exceeded, v is adjusted up, to decrease the number of new accumulators being

created and increase the number of poorly-scoring existing ones being deleted;

if, on the other hand, it looks like the limit will be undershot, v is adjusted

down, with reverse effect. The process is summarised in Algorithm 2.

Still to be specified is how to choose v at the start of each term’s inverted

list, and how and when to adjust it during list processing (lines 3 and 15 of

Algorithm 2). The choice of the initial value of v for each term’s inverted list

is made as follows. At the start of query evaluation, v is set to 0, and every

new document occurrence creates an accumulator. Unconstrained accumulator

creation continues until the next term to be processed could take the number

of accumulators over the limit (that is, |A|+ ft > L). At the start of processing

of the limit-threatening term t, an initial value for v is estimated as described

below, and regular adjustments to v begin. From then on, v is carried forward

from the end of processing one term to the start of processing the next.

The estimation of v at the start of processing of the limit-threatening term

t is performed as follows. Assume that different fd,t values are spread uni-

formly throughout It. Assume also that there is some value ht for which

50

Algorithm 3 : Adaptively estimate the thresholding parameter for a term.

Input: a set of accumulators A, a term t, an accumulator target L, and a
contribution metric contrib. (Adapted from Lester et al. [2005])

1: assign startA← |A|
2: if |A|+ ft < L then
3: assign v ← 0
4: else if v = 0 then
5: assign v ← contrib(ft, max{fd,t | d ∈ the first p pointers in It})
6: assign vs ← v/2
7: while pointers remain in It do
8: process pointers through until the pth as described in Algorithm 2, using

v as an accumulator value threshold.
9: assign predict ← |A|+ (ft − p)× (|A| − startA)/p

10: if predict > L · θ then
11: assign v ← v + vs

12: else if predict < L/θ then
13: assign v ← v − vs

14: assign p← 2p + 1
15: assign vs ← (vs + 1)/2

|{d ∈ It | fd,t ≥ ht}| = L. Exactly one such document d could be expected

to occur in the first p = ft/L pointers of It (where ft is the total number of

documents that t occurs in); therefore fd,t sets a lower bound on ht, and so is

an appropriate value to derive v from. So, the first p pointers of It are sampled,

and the highest fd,t value in them is used to determine an initial v. Obviously,

this is only an estimate, as the assumption of a strictly even distribution of fd,t

values does not hold with real data, and the presence of existing accumulators,

and the likely proportion of them to fail the threshold, have not been considered.

Nevertheless, it provides a reasonable initial estimation.

The system re-estimates v at regular intervals. It does so by taking the

change in the number of accumulators (both new accumulators created and

existing ones dropped) since the start of processing the current list and extrap-

olating the change to the end of the list. If the extrapolation forecasts that the

accumulator limit will be exceeded, v is adjusted up; if undershot, v is adjusted

down. However, if the system adjusts v by too much, and particularly if it

does so after it is well into processing the list, then the principle of equity will

have been violated. At the same time, re-estimating v adds to the cost of the

computation, and it is undesirable to have to repeat the re-estimation too often.

A number of techniques are employed to balance the requirements to treat

documents equitably and to maintain the accumulator limit, while at the same

time keeping computation costs down. First, the accumulator limit is given a

tolerance, θ. The value chosen for θ depends upon the similarity metric being

used; θ = 1.2 was chosen for the experiments reported in the next section,

51

which employed a language model with Dirichlet smoothing. If extrapolation

suggests that at the end of the current list, L/θ < |A| < L · θ, then v is left

unchanged. Second, the amount vs that v can be adjusted by is set to v/2 at

the start of each list, and then is halved each time an adjustment is considered.

The result is that large shifts are allowed at the beginning of the list, but they

become increasingly small as more of the list is processed. And third, the initial

adjustment point is after ft/L pointers (the same as the size of the sample used

to set the initial value of v), and each subsequent adjustment point is twice as

far into the list as the one before it. This means that adjustments are made

less frequently the further into the list processing has been performed, with no

adjustment being made in as much as the last half of the list. The end result

is a convergence to a stable threshold value, one that would ideally come about

naturally, but is forced by the algorithm even if it does not. The treatment of

documents at the very start of the list is less predictable than those later in the

list, something that is unavoidable in an adaptive, single-pass scheme. However,

the unpredictability is not biased (that is, does not systematically overestimate

or underestimate the threshold), and the duration of the unpredictability is kept

small. The process is summarised in Algorithm 3.

5.2.2 Evaluation methodology and results

Reducing the number of accumulators that need to be created, stored, and

processed during query evaluation greatly benefits efficiency. The efficiency im-

provement occurs in all architectures, including the monolithic one. For the

pipelined architecture, there is the added benefit of a decrease in the amount of

data to be serialised, shipped between nodes, and deserialised. For all architec-

tures, therefore, but particularly for the pipelined one, processing efficiency is

an inverse function of the number of accumulators used, and the question be-

comes how low the accumulator limit can be set without significantly harming

retrieval effectiveness.

The evaluation reported here uses the 426 GB GOV2 collection, TREC queries

701-750, and the corresponding 12-Nov-04 qrels; the effectiveness metric is

MAP. Evaluation is carried out using a monolithic Zettair system. Accumu-

lators are counted by sampling accumulator usage after every 100 document

pointers have been processed, over the whole of the query run, and averaging

these counts. Regular sampling is preferable to counting accumulators in use

at the end of each query or query term, as that understates the total system

workload (accumulators by time) imposed by terms and queries that take longer

to process.

Three query pruning regimes are chosen for evaluation: Continue-Part ,

52

Target
Continue-Part Continue-Full Adaptive-Pruning

(’000)
Actual

MAP
Actual

MAP
Actual

MAP
(’000) (’000) (’000)

1 1.0 0.045 237.9 0.235 1.5 0.150
2 2.0 0.065 238.9 0.235 3.2 0.179
4 4.0 0.093 252.4 0.235 5.8 0.202

10 10.0 0.126 260.3 0.235 13.0 0.215
20 19.9 0.142 372.1 0.235 26.5 0.228
40 39.8 0.141 478.7 0.235 47.7 0.233

100 98.5 0.170 533.7 0.235 121.1 0.237
200 194.1 0.194 599.9 0.237 214.7 0.239
400 373.8 0.212 1,590.6 0.239 395.5 0.240

1,000 845.3 0.221 2,862.0 0.240 900.0 0.240

Table 5.2: Retrieval effectiveness scores, using TREC topics 701–750 (short

queries), the GOV2 collection, retrieval depth r = 1,000, and a language model

with Dirichlet smoothing [Zhai and Lafferty, 2004]. Numbers reported are mean

average precision (MAP), and the time-averaged number of accumulators re-

quired to process the query stream. A full evaluation of each query leads to a

MAP of 0.240.

Continue-Full , and Adaptive-Pruning. Results for the two corresponding Quit

methods are not provided: while faster than Continue, they demonstrated much

lower effectiveness. The MAP for a full evaluation of each query, with no limit

on accumulators, is 0.240; the intent of the experiment is to see how few accu-

mulators each method can use and still achieve a MAP that is not significantly

lower than this.

Table 5.2 gives the results of the experiment. As expected, the Continue-

Part strategy very strictly enforces the accumulator limit. However, its retrieval

effectiveness is poor; even with an accumulator limit of 1,000,000 (4% of the 25

million documents in the collection), its MAP is significantly lower than that

of a full evaluation, due to its bias towards documents occurring early in the

collection. In contrast Continue-Full achieves effectiveness almost equivalent to

that of full evaluation even with a nominal limit of 1,000 accumulators. How-

ever, it is very poor at enforcing the accumulator limit, and in practice cannot

keep the number of accumulators below 1% of the collection size. Indeed, the

limit set is an extremely poor indication of the number of accumulators actually

created: attempting to explicitly set the limit to 1% of the collection size leads

to use of accumulators numbering closer to 3% of the collection size. Note that

for the Continue-Full method the accumulator limit of 1,000 roughly amounts

to saying “except for very rare terms, only allow the lowest-ft term to create ac-

cumulators”; it is interesting (and perhaps somewhat surprising) that relatively

good effectiveness should result from such a rule.

53

In contrast to the Continue-Part and Continue-Full strategies, the Adaptive-

Pruning method performs well both in enforcement of the limit and in retrieval

effectiveness. For limits below 1% of the collection size, it does tend to overshoot

the limit somewhat, sometimes by more even than the 20% tolerance allowed in

the implementation of Algorithm 3. But significant overshooting only occurs for

very low limits. The adaptive query pruning approach achieves full-evaluation

effectiveness with 400,000-odd accumulators (or roughly 1.5% of the collection

size), and near-equivalent effectiveness with a limit of 100,000 accumulators

and actual accumulators in use numbering only 0.5% of collection size. Even

below this accumulator limit, degradation in retrieval effectiveness is gradual.

Moreover, in calculating MAP to a depth of 1,000 documents, we are being

conservative, since few users actually look so deep into the ranking. With less

conservative assumptions, even more aggressive accumulator pruning would be

possible.

5.3 Calculating accumulator costs

Using the Adaptive-Pruning strategy, near-full retrieval effectiveness can be

achieved with an accumulator limit L of around 0.4% of collection size. For the

full GOV2 collection, this means in practice that an average of around 100,000

accumulators are used to process each query. Through the gap-coding of docu-

ment numbers and the quantisation of partial document scores, the size of each

accumulator in its serialised form can be reduced to an average of 2.6 bytes.

Assume that the least frequent term t in each query has an ft ≥ L, so that the

accumulator limit is reached by the end of processing of the first query term.

The space each query bundle requires for accumulators is then roughly 260 KB.

The SYNQ query set used for the main experiments in this thesis has an

average of 2.6 terms per query. Assume that every query term occurs in the

index, and that for every query no two query terms are held on the same node.

Then the number of times that accumulators need to be shipped for a query is

one less than the number of terms in the query, since accumulators do not need

to be shipped to the first evaluator node, or from the last one. Therefore, for

the SYNQ query log, accumulators need to be shipped between nodes an average

of 1.6 times per query.

Combining the averages for the bundled accumulator size and number of

times accumulators need to be shipped, we arrive at an average bandwidth re-

quirement of 420 KB per query processed in a pipelined system, even on the basis

of the worst-case assumptions made in the above discussion. Given a 1 gigabit

network, over 200 queries per second could be accommodated before network

bandwidth became a bottleneck. As we shall see, such a rate of queries is well

54

above the actual throughput any of the architectures tested here can achieve.

For the pipelined architecture, therefore, the bandwidth required to ship query

bundles is not a bottleneck, once accumulator compression and pruning tech-

niques have been applied.

5.4 Alternative query modes

The preceding discussion of accumulator management in a pipelined system

assumes that free-text queries are being evaluated using only term frequency

information, which is the mode of querying specified in Section 2.1 and used

throughout the current research. However, it is worth considering briefly how

other query modes could be supported in a pipelined system. Boolean, phrase,

and proximity queries, whether explicitly submitted by the user or implicitly

generated by the search engine, require conjunctive relations to be evaluated.

In a pipelined system, conjunctive processing can be performed by shipping

the lowest ft term t1 to the node holding the second lowest ft term t2, then

shipping the conjunction t1 ∧ t2 to the next lowest ft term t3, and so forth.

The processing mode is therefore similar to pipelining accumulators. Where the

conjunctive relation evaluated is a form of intersection (Boolean AND, required

phrase, or required proximity), the size of the shipped conjunction is bounded

by the frequency of the least-frequent term and is non-increasing (and in general

sharply decreasing) as each subsequent term is processed. On the other hand,

where the relation evaluated is a form of union (Boolean OR) or is being used

as a supplemental evidence of relevance (proximity relations in addition to stan-

dard tf ·idf), then in a näıve implementation the size of the shipped conjunction

increases over time and is bounded only by sum of the frequencies of each term

save the most frequent (processing finishing when the final node is reached).

Even here, though, it should be possible to prune low-quality candidate docu-

ments, albeit not as aggressively as with simple tf ·idf evaluation. These issues

do not arise in a document-distributed system.

Contemporary web search engines also make use of query-independent evi-

dence such as PageRank [Brin and Page, 1998] and click data [Xue et al., 2004].

Frequently, such evidence is attached not to terms, but to documents. In a

term-partitioned index, such document-specific information could be replicated

on each node, leading to increased memory usage. How significant the extra

memory requirement is depends on the amount of information held in connection

with each document, and also whether information is stored for every document

or only for certain high-value ones. Alternatively, document-specific information

could be held on a single node, which incorporates it in a post-processing step;

however, such an approach would hamper the degree of accumulator pruning

55

that could take place, as a document with a low accumulator value from query

term processing could see its score increased by the application of document-

specific evidence. In a document-distributed system, in contrast, storage and

processing of per-document information is straightforward.

5.5 Summary

Efficient accumulator handling is vital to the efficiency of the pipelined archi-

tecture. This chapter has described techniques that greatly reduce the burden

of shipping accumulators between pipelined nodes. With compression, each

accumulator can be reduced to 2.6 bytes in serialised form. Dynamic accumu-

lator pruning limits the number of accumulators created to around 0.4% of the

number of documents in the collection with little or no cost in effectiveness.

Combined, these techniques reduce the bandwidth required for a pipelined sys-

tem to well within the capacity of a 1 gigabit network. In Chapter 6, it will be

observed that the throughput of the pipelined architecture is only slightly more

sensitive to changes in the accumulator limit than that of document distribu-

tion, indicating how effectively the techniques described in this chapter lighten

pipelining’s burden of shipping processing state between nodes.

56

Chapter 6

Experimental comparison of

distributed architectures

Chapter 4 presented a methodology for performing efficiency experiments upon

distributed information retrieval systems. Pipelining’s potential bottleneck with

accumulator shipment having been solved by the techniques presented in Chap-

ter 5, we are now ready in the current chapter to employ the methodology

to compare the document distributed, term distributed, and pipelined archi-

tectures. The first section introduces the data, explains the methods for test-

ing scalability, and describes the experimental procedure. Suitable settings for

simulq and the accumulator limit are determined empirically in the second sec-

tion. The third section presents the experimental results for each of the three

architectures, which demonstrate that pipelining scales poorly. Finally, the

fourth section conducts a post-mortem on the experiments, to determine the

reasons for pipelining’s poor scalability.

6.1 Experimental data and procedure

The test collection chosen for the experiments in this chapter is the largest of the

TREC collections to date—the GOV2 collection, described in Section 2.4. Although

the largest of the TREC collections, GOV2 is by no means large by the standards of

web-scale search engines. Nevertheless, there are a number of advantages to us-

ing it instead of a larger, but non-standard, crawl. First, the collection is readily

available to other researchers. Second, the nature and contents of the collection

have received some study, and existing performance results are known. And

third, standard queries and accompanying relevance judgments are available, in

the form of TREC topics 701-750 and the 12-Nov-04 qrels respectively, allowing

57

Attribute
Collection

TB/64 TB/32 TB/16 TB/08 TB/04 TB/02 TB/01

Size (GB)
Documents (106)
Terms (106)
Index (GB)
Query cost (MB)

6.7
0.39
4.89
0.3

0.03

13.3
0.79
8.15
0.7

0.06

26.6
1.57

13.34
1.2

0.13

53.2
3.16

21.68
2.4

0.25

106.4
6.31

35.13
4.5

0.51

212.9
12.60
56.19

8.7
1.01

425.8
25.21
87.74
16.6
2.02

Table 6.1: The various sample document collections. “Terms” is the number

of distinct terms in the vocabulary. The final row shows the average volume of

compressed index data processed when executing each of the 10,000 test queries

on that fractional collection.

the retrieval effectiveness implications of efficiency-oriented changes to easily be

measured.

The query set used for the efficiency runs is the synthetically-generated

SYNQ set, derived by translation from the Excite97 query log as described in

Section 4.1.2. Prior to translation, the Excite97 log was processed as follows.

First, the log was sorted into query arrival order, according to the timestamps

provided. Then, Boolean and phrase queries were converted into simple ranked

queries. Queries with terms longer than 15 characters, or with terms that looked

like URLs, were removed. The terms “the”, “and”, “a”, “are”, “or”, and “is”

were stopped from the query log (but not from the index). An additional 310

common terms were stopped, but only if this did not reduce the length of a

query to below 3 terms. Removing stop words from the query stream in this

way reflects the common behaviour of real-world search engines. For the exper-

iments reported in the current chapter, the first 20,000 queries were used; in

Chapter 7, some experiments use the first 60,000 queries.

For these experiments the largest collection used was the full GOV2. Power-

of-two fractions of this full collection were then extracted, as described in Sec-

tion 4.4, down to a 1/64th collection. A collection that is 1/dth of the full

collection size is referred to here as a TB/d collection. The characteristics of

each fractional collection are summarised in Table 6.1. Note that the collection

scales uniformly in size, in number of documents, and in query cost. It is also

of interest to observe the rate of growth in the size of the vocabulary: while

sub-linear, a very substantial proportion of new terms are discovered each time

the collection size is doubled. As a result, there are not great savings in the size

of the on-disk vocabulary structure. However, a preliminary experiment shows

that nearly all of the additional vocabulary will not be accessed during query

processing; thus, the accessed vocabulary of TB/64 will be much the same size

as that of TB/01.

58

Document partitioning was performed by dividing each fractional collection

into equally-sized subcollections, taking care to select documents for each sub-

collection at intervals, rather than taking all documents for a subcollection from

a contiguous segment of the original collection. The HTML documents in the

original collection are stored in crawl order, meaning that higher-level web pages

tend to cluster towards the front. Additionally, all the PDF files appear at the

end of the collection. The round-robin selection mechanism ensures a higher de-

gree of homogeneity between the document-partitioned subcollections. A hash

function was used to assign terms to partitions in the term-partitioned indexes.

The hardware used in these experiments is a Beowulf-style cluster of 8 com-

puters, each a 2.8 GHz Intel Pentium IV with 1 GB of RAM and 250 GB local

SATA disk, connected via a 1 gigabit network, and controlled by a dual 2.8 GHz

Intel Xeon with 2 GB RAM running Debian GNU/Linux (sarge), with a 73 GB

SCSI disk for system files and twelve 146 GB SCSI disks for data in a RAID-5

configuration. Clusters of 2, 4, and 8 nodes, plus controller, are created from

the full cluster. The subindex held by each node is stored on that node’s local

disk.

Each of the three distribution methods are tested against all combinations

of the seven collections and three cluster sizes, excluding only those combina-

tions for which the effective per-node collection is less than 1/64th of the full

collection. In addition, a monolithic run is made on each collection, employing

a single cluster node, to provide a baseline to compare the distributed results

against. These runs enable the exploration of each of the three types of scale

discussed in Section 4.4: scaling the collection size, scaling the cluster size, and

scaling both together.

The experiments are designed to recreate as closely as possible the condi-

tions that a real-world search engine would be running under. A live search

engine would be making full use of main memory to buffer index data. Similar

conditions need to be created for the experimental runs. Running the query set

through twice, and timing the second run, is not an appropriate way to achieve

this, even though it is a method that is sometimes employed. If, for instance,

the data used in processing the query set is smaller in size than main memory,

but the entire index is larger, then the system will be unrealistically caching

exactly the section of the index that it needs to process the particular set of

queries. On the other hand, running a warm-up query set drawn from an ear-

lier section of the query log is by itself inadequate if the index is smaller than

main memory; the whole index could be cached, but only those parts accessed

in processing the warm-up query set actually will be.

To simulate a live system in the middle of an extended run, therefore, the

following procedure is followed. First, indexes are copied from the cluster con-

59

Simultaneous Method
queries, m Document Term Pipelined

1 2.05 0.54 0.60
2 3.57 1.04 1.13
4 4.48 1.20 2.01
8 5.21 1.23 3.01

16 5.77 1.24 3.94
32 6.03 1.22 4.46
64 6.21 1.21 4.50
96 6.18 - 4.40

Table 6.2: Normalised throughput with simulq m, using k = 8 nodes, and col-

lection TB/01. Throughput is presented in units of terabyte queries per machine

second, as discussed in Section 4.2.1. “-” indicates that the run was unstable at

this level of simulq.

troller to the dedicated experimental partitions of the respective nodes. Then,

the file cache is flushed by using the mmap system call to read through an unre-

lated file larger than main memory. Next, as much of the index as will fit into

memory is cached using mmap, starting with the index vocabulary. When this is

complete, the first 10,000 queries of the query set are run, but no timings are

made. Then, the second 10,000 queries are run, and this run is timed. Finally,

once the timed run is complete, the system is shut down, and the local indexes

are erased.

6.2 Experimental parameters

Two experimental parameters introduced in Chapter 4 are the number of si-

multaneous queries or simulq allowed in the system at one time, and the ac-

cumulator limit set for the adaptive query pruning regime. For simulq, what

is being sought is the setting that maximises system throughput. For accum-

mulators, the appropriate limit for the full collection is already known, and the

question is what limit to use for fractional collections and partitioned indexes.

The appropriate settings for these parameters are determined empirically in this

section.

6.2.1 Setting simulq

Table 6.2 shows the throughput for different simulq, for an 8-way partitioning

of the full collection, using each of the three distribution methods. These fig-

ures emphasise the importance of parallelism in all query processing regimes,

but particularly in the pipelined system. The optimal simulq setting for docu-

60

ment distribution achieves a threefold improvement in throughput over a single-

simulq or serialised system. For pipelining, the increase is more than sevenfold.

Pipelining and document distribution both peak at 64 simulq, whereas term dis-

tribution reaches its maximum throughput at 16 simulq, and becomes unstable

at 96, due to excessive load on the receptionist. It is possible that different col-

lection and cluster sizes would display slightly different peak parallelism levels,

but sample comparative runs indicate that 64 simulq is a reasonable level for

all systems, and for the sake of comparability, this has been chosen as the level

of parallelism for all configurations. A real-world system would not want to run

for extended periods of time at this level of parallelism, as reponse times would

necessarily be impaired. However, as discussed previously, our intent here is to

determine maximum throughput.

6.2.2 Scaling the accumulator limit

In Section 5.2.1, it was demonstrated that with adaptive pruning, a limit of

100,000 accumulators is sufficient to attain retrieval effectiveness for the GOV2

collection not significantly below that of full evaluation. The base accumulator

limit for these experiments is therefore 100,000. However, two questions remain.

Should the limit be scaled with the size of the collection? And in a document-

distributed system, should each node have the full limit, or a fraction of it?

There are arguments for and against scaling the accumulator limit with col-

lection size. On the one hand, if the size of the collection is halved, then roughly

speaking so is each term’s inverted list, and so too is the number of accumulators

that would be created for each query were no limit set. On the other hand, the

number of results to be returned to the user remains fixed at 1,000, regardless

of collection size. Ultimately, the answer is best found experimentally: can the

accumulator limit be scaled without significantly harming retrieval effectiveness,

or is it necessary to maintain it at 100,000?

Table 6.3 gives the dissimilarities of scaling and not scaling the accumula-

tor limit with collection size, compared to a full evaluation. As discussed in

Section 5.2.1, the 100,000 limit does not give precisely the same effectiveness

as no limit at all (the MAP is 0.237, rather than 0.240), which is reflected in

the dissimilarity of 0.022 for the full TB/01 collection. As one would expect, if

accumulators are not scaled with collection size, then the dissimilarity between

runs with and without an accumulator limit decreases as the collection gets

smaller. On the other hand, if accumulators are scaled, then the dissimilarity

grows as the collection size decreases, which is to say that the accumulator-

limited results diverge farther from the accumulator-unlimited ones. This is the

effect of maintaining the number of results returned to the user (and considered

61

Fraction f Collection
Accumulators

100,000 100,000/f
1 TB/01 0.022 0.022
2 TB/02 0.011 0.026
4 TB/04 0.004 0.031
8 TB/08 0.001 0.036

16 TB/16 0.000 0.045
32 TB/32 0.000 0.055
64 TB/64 0.000 0.057

Table 6.3: Normalised dissimilarity over 10,000 SYNQ queries on a monolithic

system, first holding the accumulator limit constant at 100,000, and then scaling

the limit with collection size. Dissimilarity values are relative to a baseline of

unlimited accumulators. For example, TB/04 is processed with 100,000 and then

25,000 accumulators. The dissimilarity metric is described in Section 4.3.

for dissimilarity) at 1,000. For TB/64, for instance, the accumulator limit itself

is only 1,666. Nevertheless, the increase in dissimilarity is only gradual, and

even at its maximum is still relatively small. Therefore, in these experiments,

accumulators will be scaled strictly with collection size. In a real system, one

might choose instead to scale, but sub-linearly; however, this would needlessly

complicate the analysis of the experimental results reported here.

A similar logic applies to the question of whether each node in a document-

distributed system should have the full accumulator limit or a fraction of it.

Recall that each of the k subindexes of a document-partitioned index is effec-

tively an independent monolithic index of 1/kth of the full collection. Since it

has been determined that the accumulator limit L should scale with collection

size, it follows that each node in a k-node document partitioned system should

have an accumulator limit of L/k. The same is not the case, however, for term

distribution or pipelining. In term distribution, query processing is performed

on the receptionist, which will naturally use the full accumulator limit appro-

priate for the collection size. In the pipelined system, the processing state is

shipped between nodes; each node therefore acts as if it were evaluating against

the full collection, but only for its terms; therefore, each pipelined node should

use the full accumulator limit for the collection.

6.3 Experimental results

6.3.1 Monolithic baseline

The efficiency experiments start with a run against each of the fractional collec-

tions indexed monolithically, to provide a baseline against which the distributed

62

Collection
Normalised
throughput

TB/64 3.22
TB/32 4.44
TB/16 5.21
TB/08 6.16
TB/04 6.60
TB/02 6.66
TB/01 6.63

Table 6.4: Throughput as a function of collection size, using a single processor,

with at most t = 64 queries concurrently active. Throughput is presented in

units of terabyte queries per machine second, as described in Section 4.2.1.

architectures can be measured. The results are given in Table 6.4. Normalised

throughput increases with collection size up until TB/04 is reached, indicating

that the system is benefitting from economies of scale. However, beyond that

point, normalised throughput is flat, as the system becomes disk-bound. This

suggests that a collection of roughly the size of TB/02 is optimal for a machine

with capacity of one of the cluster nodes. The likely effect of holding a signif-

icantly larger index on each cluster node will be considered in more detail in

Section 8.2.

6.3.2 Document distribution

Table 6.5 is the first of three giving normalised throughput results for each of

the three distribution methods, in this case for document distribution. These

tables have a common format, with collection size scaling from left to right,

cluster size scaling from top to bottom, and both scaling together from top-left

diagonally to bottom-right. The top-left to bottom-right diagonal, for instance

k
Collection

TB/64 TB/32 TB/16 TB/08 TB/04 TB/02 TB/01

1 3.22 4.44 5.21 6.17 6.60 6.66 6.63
2 – 3.19 4.38 5.27 6.19 6.49 6.72
4 – – 3.18 4.39 5.26 6.19 6.65
8 – – – 3.16 4.33 5.31 6.21

Table 6.5: Normalised throughput rates for document-partitioned distributed re-

trieval. All values are in units of terabyte queries per machine second. The first

row shows the corresponding values for a monolithic configuration. As many as

t = 64 queries were concurrently active. The receptionist is not counted as one

of the processors.

63

k
Collection

TB/64 TB/32 TB/16 TB/08 TB/04 TB/02 TB/01

1 – – – – – – –
2 – 2.38 3.14 3.82 4.30 4.70 4.82
4 – – 1.61 1.92 2.18 2.32 2.42
8 – – – 0.96 1.08 1.16 1.21

Table 6.6: Normalised throughput rates for term-partitioned distributed retrieval.

All values are in units of terabyte queries per machine second. As many as

t = 32 queries were concurrently active. The receptionist is not counted as one

of the processors.

from single-node TB/08 to 8-node TB/01, will be referred to as the diagonal of

system scale, and it indicates the ability of an architecture to handle larger col-

lections by increasing the number of servers in the cluster while still maintaining

throughput. The top line of Table 6.5 repeats the results for the monolithic run,

for easy comparison.

As mentioned before, the index of each node in a document-distributed sys-

tem processes queries very much as if it were an autonomous monolithic instance.

In addition, every index in a k-node partitioning of a 1/f fractional collection

is similar in size to a monolithic index of the 1/(f ·k) collection. Therefore, one

would expect throughput figures along each top-left to bottom-right diagonal of

system scale to be similar, which is indeed what is observed in Table 6.5. Note

that the monolithic index of TB/01 has similar throughput to the 2-node and

4-node partitions, indicating that for this index size and hardware, replication

would be a reasonable strategy.

These results indicate that document distribution scales evenly with the

size of the system as a whole (that is, when collection and cluster size are

scaled together). Provided care is taken to avoid excessive network contention

or overloading of the receptionist, and provided too that the homogeneity of

partial collections is maintained, the diagonals of system scale can be confidently

extended outwards to the bottom-right. The same is far from the case with the

two term-partitioned architectures.

6.3.3 Term distribution

Table 6.6 gives the normalised throughput of the term distributed system along

the various dimensions of scale. Monolithic results have not been reproduced

here, as a one-node term-distributed system is not equivalent to a monolithic one

(and would not make much sense in its own right). The immediate observation

here is the term-distributed system’s poor scaling with cluster size. Doubling

64

k
Collection

TB/64 TB/32 TB/16 TB/08 TB/04 TB/02 TB/01

1 3.22 4.44 5.21 6.17 6.60 6.66 6.63
2 – 3.79 4.63 5.49 6.11 6.47 6.81
4 – – 4.05 4.81 5.38 5.62 5.98
8 – – – 3.60 4.02 4.31 4.50

Table 6.7: Normalised throughput rate for pipelined query evaluation with a

term-partitioned index. All values are in units of terabyte queries per machine

second. The first row shows the corresponding values for a monolithic configu-

ration. As many as t = 64 queries were concurrently active. The receptionist is

not counted as one of the processors.

the number of nodes in the cluster halves the normalised throughput, meaning

that the number of queries being processed each second remains the same.

What is occurring in Table 6.6 is that the receptionist is acting as a bottle-

neck upon the system as a whole. A little reflection will serve to demonstrate

the reason. In the term-distributed system, each node is responsible only for

looking up the location of a term’s inverted list on disk, loading it from this

location, and shipping it back to the receptionist. The nodes are, in essence,

little more than inverted list servers. All actual processing of inverted lists is

performed by the receptionist. As it happens, the receptionist machine in the

experimental cluster has roughly twice the capacity of each evaluator node, and

as a result for clusters of size k = 2, term distribution manages around 75% of

document distribution’s throughput. However, at this cluster size, the recep-

tionist is already fully loaded, which is why normalised throughput halves when

the cluster size is doubled.

Even these figures exaggerate the term-distributed architecture’s process-

ing capacity. When counting the number of machines k in the cluster in order

to normalise the throughput figures, the receptionist is not included. For the

document-distributed and pipelined systems, this is a reasonable approach, as

the receptionist does very little work, and could if necessary share a machine

with one of the evaluators. However, in the term-distributed system, the re-

ceptionist’s processing resources are fully used. Therefore, we are essentially

undercounting the machines in the term-distributed clusters by 2.

6.3.4 Pipelined

Table 6.7 gives the normalised throughput figures for the pipelined architec-

ture. A comparison with the results for term distribution given in Table 6.6

demonstrates that pipelining is certainly a more efficient and scalable architec-

ture to run on top of a term-partitioned index. For pipelining, the computation

65

Accumulators
Method

Document Term Pipelined
40000 7.26 1.43 5.73

100000 6.21 1.21 4.50
200000 4.91 1.02 3.57
400000 3.82 0.80 2.57

Table 6.8: Normalised throughput rates, measured in terabyte queries per ma-

chine second, as the number of accumulators is varied. In each experiment k = 8

processors were applied to the TB/01 collection. All values are in units of ter-

abyte queries per machine second. As many as t = 64 queries were concurrently

active. The receptionist is not counted as one of the processors.

involved in query evaluation is shared amongst the cluster nodes, not concen-

trated on the receptionist, avoiding the bottleneck. Bandwidth usage is also

lower. Through accumulator compression and adaptive pruning techniques, an

upper-bound average bandwidth of 480 KB per query was calculated for TB/01

in Section 5.3, compared to the 2.02 MB needed per query for a term-partitioned

index. The actual network usage as measured in the pipelined run was far less

even than the upper-bound average, at 170 KB per query. A 1 gigabit network

could therefore support around 600 queries per second, whereas the through-

put of 4.50 terabyte queries per machine second for an 8-node index of TB/01

equates to around 85 queries per second. Clearly, bandwidth is not an issue for

the pipelined system.

Compared to the even scaling of the document-distributed system, however,

pipelining scales poorly. For smaller collections, pipelining outperforms doc-

ument distribution, due probably to fewer network messages and vocabulary

lookups, which remain fixed relative to collection size, and thus weigh more

heavily with smaller collections. Pipelining is also comparable with document-

distribution for larger collections on two-node systems. However, as the number

of nodes in the cluster increases, pipelining’s throughput drops off sharply. The

difference is particularly stark along the diagonal of system scale from mono-

lithic TB/08 to 8-node TB/01. Whereas the monolithic throughput of 6.17 ter-

abyte queries per machine second is matched by 8-node document-distribution’s

6.21, for pipelining, throughput has dropped to just 4.50. Pipelining, therefore,

achieves reasonable results with small collections and small clusters, but scales

poorly.

6.3.5 Adjusting the accumulator limit

Section 5.2, which discussed the adaptive pruning technique and the way it is

used to maintain an accumulator limit, provided results showing that a limit

66

of 100,000 is sufficient to achieve retrieval effectiveness that is not significantly

worse than in an unconstrained system, when evaluating queries on the GOV2 col-

lection. A limit of 100,000, therefore, has been used in the previously presented

experiments, scaled with collection size as described in 6.2.2. Nevertheless, it is

of interest to see the relative performance of different architectures if the accu-

mulator limit is raised or lowered. For instance, an implementor may be unwill-

ing to accept any loss in retrieval effectiveness, no matter how insignificant, and

so may insist that the limit be raised to 200,000 or even 400,000. Conversely, the

implementor may be willing to trade off a slightly greater degradation in retrieval

effectiveness for higher throughput, particularly if users are interested in only

the top r = 10 or r = 20 results, rather than the much larger r = 1,0000 results

returned in these experiments. The effect of changes in the accumulator limit

upon the pipelined architecture, relative to that upon the other architectures,

is of particular interest. Because pipelining has to encode, ship, and decode the

accumulators, it would be expected to be relatively sensitive to changes in the

limit.

Table 6.8 shows the effect on throughput of varying the accumulator limit

for the three architectures considered here. An 8-way partitioning of the full

TB/01 index is employed in each case. Increasing the accumulator limit has a

major effect on all of the distributed architectures. The throughput of pipelining

drops by 55% as the accumulator limit is increased from 40,000 to 400,000.

However, the throughput of document distribution also falls by over 45%. More

accumulators means more memory usage, particularly in a highly parallelised

environment, and also more computation in the merging of the accumulator and

inverted lists. These factors affect every architecture, and the results reported

in Table 6.8 indicate that the additional burden of shipping larger accumulator

bundles which pipelining alone must bear is of relatively small significance.

6.4 Post-mortem

The experimental results given in the preceding sections are clearly not encour-

aging for the pipelined architecture. The supposition was that the pipelined

architecture would outperform document distribution due to fewer disk seeks

and a smaller per-node vocabulary. If this were the case, the effect should be

more noticeable as the degree of partitioning increases (holding the ratio of col-

lection to cluster size constant). The actual results, however, show quite the

opposite trend: the greater the number of partitions, the worse pipelining’s

normalised throughput. Either the disk access and memory usage advantages

predicted for pipelining failed to eventuate, or else some other detrimental effect

is outweighing them. This is the subject of the current section.

67

System

Document-distributed Pipelined
Sectors Distinct Sectors Distinct

read (×105) reads (×103) read (×105) reads (×103)
1, TB/08 6.89 10.06 6.89 10.06
2, TB/04 6.08 9.64 6.67 5.18
4, TB/02 6.38 9.81 3.93 2.30
8, TB/01 5.79 8.79 3.32 1.64

Table 6.9: Disk read performances of the document-distributed and pipelined

architectures along the main diagonal of system scale, from a monolithic index

of TB/08 to an 8-node index of TB/01. The results are averages per node. All

figures refer to physical reads to disk (that is, they exclude accesses to file data

cached in main memory), as reported by the /proc filesystem under Linux kernel

2.6. “Sectors read” is the number of sectors read off disk (a whole sector is read,

even if only a single byte is required). “Distinct reads” refers to the distinct read

requests made by the filesystem layer to the disk.

Table 6.9 examines the read behaviour of the document-distributed and

pipelined architectures along the most important diagonal of scale. As the sys-

tem scales in size, each node in the document-distributed system continues to

perform roughly the same number of read operations. In contrast, the number

of read operations made by each node in the pipelined system falls dramati-

cally as the system grows larger. Pipelining is benefitting from a number of

confluent factors as the system scales up. First, the number of terms held on

each node falls, requiring fewer distinct reads from disk. The greater length of

inverted lists also means that, secondly, there is less unused data read off disk

per sector, especially with rare terms, so the number of sectors read goes down.

Thirdly, the vocabulary is smaller, so there is more memory free for caching

files. And fourthly, the smaller number of query terms means fewer vocabulary

reads. These figures demonstrate that the pipelined architecture does, indeed,

achieve the improved disk read and memory use characteristics predicted for it.

Unfortunately, pipelining encounters a problem that far outweighs the ben-

efits it derives from its parsimony in disk reads and memory use. The problem

is its poor balancing of load between the nodes in the system. The poor load

balancing of the pipelined system can be observed in Figure 6.1, which gives the

average busy load per node for 8-node indexes of TB/01 under the document-

distributed and pipelined architectures. Here, busy load refers to the amount of

time a node’s processor spends doing anything except the idle task; it includes

time spent waiting for I/O to complete. The busy load is remarkably even be-

tween nodes in the document-distributed system, and each node is at around

99% load, indicating excellent utilisation of the cluster’s processing capacity. In

contrast, load is very poorly balanced between the nodes of the pipelined sys-

68

1 2 3 4 5 6 7 8

Document-distributed

0.0

20.0

40.0

60.0

80.0

100.0

Lo
ad

 p
er

ce
nt

ag
e

1 2 3 4 5 6 7 8

Pipelined

0.0

20.0

40.0

60.0

80.0

100.0

Lo
ad

 p
er

ce
nt

ag
e

Figure 6.1: Average per-processor busy load for k = 8 and TB/01, for document-

distributed processing and pipelined processing. The dashed line in each graph

is the average busy load over the eight processors.

tem. One node is at 100% load, while the others languish between 40% and 80%.

As a result, processing utilisation across the system does not even reach 65%, a

very poor result. The underutilisation of processing capacity greatly outweighs

the disk access and memory usage efficiencies of the pipelined system.

Figure 6.2 breaks down the busy load of each architecture over time. Here,

too, we can observe the document-distributed nodes sharing the workload across

the entire run, varying only slightly and then in unison, and never leaving a full

processor’s worth of processing capacity idle until the system winds down over

the last few dozen queries. Next to this, the load allocation of the pipelined

system appears chaotic, with first one, then another node becoming busy, while

others are nearly completely idle for short periods, and the system as a whole

always leaves at least two processors’ worth of processing capacity unused. The

only consistent feature of this graph is that node two is almost always at full

capacity.

The nature of the problem with the pipelined system is clear. One node

(here, node two) becomes fully loaded. Queries start queueing up for processing

at this node, starving the other nodes of work. As a result, processing resources

are underutilised, and the cluster as a whole slows down.

Pipelining’s imbalance in processing load derives directly from an imbalance

in the volume of index data that each node has to process. Figure 6.3 gives

the total volume of inverted lists processed on each node over the 10,000-query

run for both architectures. Data volume is shared between the nodes of the

document-distributed system with almost perfect evenness, while pipelining is

69

0 2 4 6 8 10

Queries (1000s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

C
um

ul
at

iv
e

lo
ad

, d
oc

um
en

t d
is

tr
ib

ut
ed

0 2 4 6 8 10

Queries (1000s)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

C
um

ul
at

iv
e

lo
ad

, p
ip

el
in

ed

Figure 6.2: Aggregate load over the eight processors in a k = 8 run on TB/01.

The eight lines in the top graph reflect the pointwise aggregate load utilisation of

the eight processors in a document-distributed system; the eight lines in the lower

graph reflect the pointwise aggregate load utilisation of the eight processors in

an equivalent pipelined system. Load is measured every 100 queries in a 10,000

query run.

highly uneven, with node two having the lion’s share of data to process. The

correlation between Figures 6.3 and 6.1 is clear.

70

1 2 3 4 5 6 7 8

Document-distributed

0.0

1.0

2.0

3.0

4.0

5.0

Li
st

 v
ol

um
e

pr
oc

es
se

sd
 (

G
B

)

1 2 3 4 5 6 7 8

Pipelined

0.0

1.0

2.0

3.0

4.0

5.0

Li
st

 v
ol

um
e

pr
oc

es
se

sd
 (

G
B

)

Figure 6.3: Total inverted list lengths processed on each node, in GB, for a

k = 8-node run on TB/01. Both systems process the same total volume of index

data, but share the work differently.

6.5 Summary

In this chapter, the document distributed, term distributed, and pipelined ar-

chitectures have been subjected to a thorough empirical examination, using the

experimental techniques established in Chapter 4. Document distribution has

been shown to scale evenly with system size, whereas term distribution fails to

scale at all. Pipelining achieves the disk access benefits predicted for it, and

operates well within the bandwidth capacity of a gigabit network. However, un-

even load balancing means that, rather than gaining from the greater contiguity

of data that increases in system scale offer, it in fact scales poorly, and achieves

significantly lower throughput than document distribution on an 8-node clus-

ter. Chapter 7 examines the reasons for pipelining’s poor load balancing, and

explores possible solutions.

71

72

Chapter 7

Load balancing

In Chapter 6, it was observed that the pipelined architecture suffers from poor

balancing of workload between evaluator nodes. As a result, pipelining’s perfor-

mance lags behind that of a document-distributed system. The current chapter

examines the issue of load balancing in a pipelined system in some detail. The

first section presents a simple model for measuring and simulating workload

imbalance, and uses it to calculate the expected imbalance resulting from the

arbitrary assignment of terms to nodes. Section 7.2 examines different methods

for attempting to overcome workload imbalance by intelligent term assignment,

estimates their effectiveness using the simulated model, and evaluates their per-

formance experimentally. Finally, in the third section, load balancing through

term replication is introduced, differing degrees of replication are examined, the

different query routing strategies that replication enables are described, and

these degrees of replication and routing strategies are assessed both in simula-

tion and experimentally.

7.1 Statistics of query set imbalance

Section 4.1.1 introduced the concept of the workload Lt of term t, and defined

it as the product of t’s frequency in the query set, Qt, and the length of t’s

inverted list, Bt. From Lt can be derived the workload Ln of the evaluator node

n in a pipelined system, as:

Ln =
∑

t∈Tn

Lt

where Tn is the set of terms that are handled by node n. That is to say, the

workload of a node for a given query set is the sum of the workloads of all terms

73

held on the node, which is the total length in bytes of all inverted lists that the

node will process during the evaluation of the query set. The node’s simulated

workload provides a useful estimation of the actual processing load that each

node will be subject to during a run.

From the simulated workloads of the nodes in a pipelined system, the simu-

lated workload imbalance of the cluster of nodes can be calculated. A cluster’s

workload imbalance is the ratio of the highest node workload to the mean work-

load of all nodes in the cluster. The ratio of highest to mean is a more pertinent

measurement of workload evenness than standard deviation, since the results

from the Chapter 6 indicate that it is the busiest node in the system that is

liable to become the bottleneck for the system as a whole.

In the term-partitioned indexes examined in Chapter 6, terms were allocated

to nodes using a hash function. Hashing provides an arbitrary but determinis-

tic method of term allocation. For the experimental query set and collection,

and the particular hash function used, hashed allocation produces a workload

imbalance of 1.87. However, it is not correct to say that 1.87 is the workload

imbalance of arbitrary allocation, since each different method will result in a

different allocation of terms to nodes and hence a different workload imbal-

ance. It is only possible to talk of the average or expected workload imbalance

of arbitrary allocation. Generating a large number of (pseudo-)random allo-

cations gives an average workload imbalance of 1.45. The hashing technique

has been “unlucky” to produce an imbalance of 1.87, which is in the worst 2%

of outcomes from random allocations. Nevertheless, even the average result of

arbitrary allocation is a highly imbalanced system.

The poor average workload imbalance resulting from arbitrary allocation is

due to term workload skew. The question of skew in the distribution of term

workloads was previously examined in Table 4.2, where it was seen that the

highest workload term, “free”, by itself makes up roughly 6.2% of the workload

of the query set, with “new” making up a further 2.8%. The effect that such skew

has upon workload imbalance can be seen from a rough calculation. Assume

that all terms apart from “free” and “new” have the same workload. Then

imagine that all other terms are assigned evenly to nodes, with only these two

highest workload terms remaining to be assigned. Each node would then hold

roughly 91.0/8 = 11.4% of the workload. Then assign the remaining two terms.

If they go to different nodes, the node receiving “free” will have 17.6% of the

workload, compared to an average of 12.5%, giving a workload imbalance of

1.41. If they both go the same node, that node will have 20.4% of the workload,

giving a workload imbalance of 1.63. These figures are consistent with the

average imbalance resulting from random allocation.

74

Strategy
Batch

Avg
2 3 4 5 6

Random 1.45 1.44 1.46 1.50 1.48 1.47
Using ft 1.43 1.20 1.23 1.40 1.42 1.34
Initial Lt 1.14 1.20 1.20 1.37 1.30 1.24
Previous Lt 1.14 1.26 1.23 1.19 1.17 1.20

Table 7.1: Simulated load imbalances with different term assignment strategies.

Each batch reflects a simulated evaluation of the workload of 10,000 queries,

across k = 8 processors, as a ratio of the largest workload to the average work-

load, for that strategy. The last column shows the average imbalance over the

five query batches.

7.2 Load balancing through term assignment

The obvious solution to arbitrary allocation’s poor load balancing is to assign

terms to nodes in a manner that attempts to balance workload. A prediction

of future workload is made, and then terms are assigned so that each node’s

predicted workload is roughly similar. The simplest basis for predicting the

workload of term t is the term’s frequency in the collection or ft, which is a

factor in the term’s workload and can be calculated at index construction time;

however, this method does not account for a term’s frequency in the query

set. If a sample of the query set is available, the workload prediction can be

based upon that observed in the sample. A single sample could be taken, and

term allocation made semi-statically based upon it; this will be referred to as

the “Initial Lt” method. Alternatively, terms could be dynamically reallocated

at intervals, based upon the workloads observed in the immediately preceding

interval; this is referred to as the “Previous Lt” method.

Once a prediction of each term’s future workload has been made, terms are

allocated to nodes using a fill-smallest algorithm. The fill-smallest algorithm

works as follows. First, terms are ordered by decreasing predicted workload.

Then, iteratively, the heaviest remaining workload term is allocated to the least

loaded (“smallest”) node, choosing an arbitrary node in the event of a tie. The

process is repeated until all terms are allocated.

Table 7.1 gives the workload imbalances resulting from the different alloca-

tion strategies. The simulated runs have been extended to five query sets, being

the 2nd through 6th 10,000 query batches of SYNQ. In each case, the preceding

10,000 batch is used by the “Past Lt” method to calculate historical load and

dynamically re-allocate terms before each batch, whereas the “Initial Lt” allo-

cates terms based upon batch 1 and uses this allocation for all batches; as a

result these two methods have the same allocation for batch 2. No results are

75

Strategy
Batch

Avg
2 3 4 5 6

Hashed 4.50 4.54 5.04 4.80 4.59 4.69
Initial Lt 5.62 5.33 5.70 5.43 5.39 5.49
Doc-distributed 6.21 6.30 6.64 6.60 6.49 6.45

Table 7.2: Measured query throughput rates on a Beowulf-style cluster of 8 com-

puters, each a 2.8 GHz Intel Pentium IV with 1 GB of RAM and 250 GB local

SATA disk, where each batch consists of 10,000 queries executed against the

GOV2 collection to identify the top r = 20 matching documents, and where the

numbers reported are in units of terabyte queries per machine second. 64 simulq

were used for each run. The last column shows the average throughput over the

five query batches.

provided for batch 1, as there is no prior sample for either the “Past Lt” or

“Initial Lt” methods to use. These figures show that random allocation pro-

vides an expected imbalance in the 1.4 to 1.5 range. Using ft as an estimator of

workload achieves an average imbalance of 1.34, but is highly variable for each

individual batch. Both the high average imbalance and the variability within

this average are indicators that ft is a poor estimator of Lt; the variability is

due to the inherit “randomness” in the suitability of allocation decisions that

results from ft’s inaccuracy as a predictor of workload (sometimes good choices

happen to be made, sometimes poor ones). Previous workload with dynamic re-

allocation is a much better and more reliable predictor. Taking a single sample

and semi-statically allocating based on it performs almost as well, and avoids

the need for dynamic re-allocation.

Table 7.2 shows the throughput resulting from implementing the “Initial

Lt” allocation method in a pipelined system. Term allocation was performed

statically, based upon the workload of the first 10,000 queries of the query set.

Results are also given for pipelining with hashed allocation, and for document

distribution, to facilitate comparison. Intelligent term allocation increases the

throughput of the pipelined system some 20% over that of hashing; however, it

still falls well short of the throughput of document distribution.

Strategy
Batch

Avg
2 3 4 5 6

Hashed 1.60 1.60 1.49 1.64 1.68 1.60
Initial Lt 1.18 1.21 1.13 1.40 1.40 1.27
Doc-distributed 1.01 1.01 1.01 1.02 1.01 1.01

Table 7.3: Observed busy load imbalance for the runs described in Table 7.2

76

Table 7.3 gives the observed busy load imbalances for these runs. Here, ob-

served busy load is defined as the proportion of time each node spends doing

anything except the idle task, and the imbalance is the ratio between the bus-

iest node and the average for the cluster. These observed balances should be

compared with the estimated ones from Table 7.1. The estimates for “Initial

Lt” turn out to be quite good, both on average and for each data point. As

predicted, intelligent term allocation only partially resolves the load imbalance

of the pipelined system.

These results demonstrate that the allocation of terms to nodes based upon

historical workload significantly improves the workload imbalance of the pipe-

lined system, and as a result boosts throughput. However, pipelining still falls

well short of the even workload balance of the document-distributed architec-

ture, and therefore fails to achieve document distribution’s throughput.

7.3 Load balancing through partial replication

This section examines the technique of partial replication as a way of overcoming

the load balance problems that term assignment by itself is unable to fully

resolve. In a partially-replicated pipelined system, certain terms are allocated

to two or more evaluator nodes. This means that the workload for these terms

can be shared between those nodes. In addition, the routing of queries through

the system is no longer fixed. Instead, for queries that include replicated terms,

the system has a choice of nodes to route the query bundle through. The choice

can be used to respond dynamically to load imbalances as they occur at run

time. Intelligent query routing offers the possibility not only of compensating

for the imperfect estimation of future term workloads, but also of ameliorating

localised workload imbalances.

Query terms should be chosen for replication so as to offer the maximum

ability to smooth out workload while minimising the number of terms replicated

and the total data size of the replicated information. Minimising replication

is desirable not only because it reduces disk space usage (and, if replication

is to take place dynamically, bandwidth usage and processing costs), but also

because replication tends to lessen caching benefits. If a term is duplicated, then

it requires twice as much memory for every instance of that term’s information

to be cached.

The obvious terms to replicate are high-workload ones. Selection of these

can be performed using a query stream sampling method similar to that used in

the workload-based term allocation strategies discussed above. For these simu-

lations, the “Previous Lt” sampling method will be used. Note that it would be

particularly inefficient to choose terms for replication based on ft alone, without

77

Strategy
Batch

Avg
2 3 4 5 6

Duplicate 1 1.26 1.20 1.10 1.17 1.11 1.17
Duplicate 10 1.06 1.29 1.17 1.18 1.16 1.17
Duplicate 100 1.09 1.14 1.10 1.13 1.15 1.12
Duplicate 1000 1.08 1.09 1.07 1.19 1.09 1.10
Multi-1/10/100 1.05 1.12 1.09 1.16 1.12 1.11

Table 7.4: Simulated load imbalances with different amounts of index list repli-

cation. All assignment is via the fill-smallest term assignment strategy based on

the “Previous Lt” approach. When multiple servers host a query term, queries

are routed to them alternately. Each batch reflects a simulated evaluation of the

workload of 10,000 queries, across k = 8 processors, as a ratio of the largest

workload to the average workload, for that strategy. The last column shows the

average across all 5 batches.

regard to Qt, as this would increase the size of the replicated data relative to

the amount of redundant workload made available. A similar logic applies to

the question of how often to replicate each term. If used, multiple replications

should be skewed towards the highest workload terms. It is very possible, in

particular, that it is more efficient to replicate the highest few workload terms

multiple times than to provide a single replication of a greater number of lower

workload terms.

Once the terms to replicate have been chosen, replicated and unreplicated

terms have to be assigned to nodes. For the current simulations, a fill-smallest

algorithm is used to allocate both replicated and unreplicated terms, with work-

load prediction again being based on the “Previous Lt” method. All instances

of a higher (predicted) workload term are allocated before any instances of a

lower one, and the assigned workload of each instance of a replicated term is

divided by the number of replications; that is, if term t with total predicted

workload Lt is replicated to R nodes, then the predicted workload of each node

is increased by Lt/R for the purposes of the fill-smallest algorithm. The fill-

smallest algorithm is modified to ensure that pairs of duplicated term instances

do not always line up together.

Term replication makes query routing possible. The simplest routing strat-

egy is to choose alternately between nodes. If high-workload terms are chosen

for replication, alternating routing will help even out imbalances caused by term

workload skew. Term t replicated c times effectively changes from a single term

with workload Lt to c terms each with workload Lt/c. However, alternating

routing foregoes the opportunity to compensate for imperfect workload predic-

tion and localised imbalances at runtime.

78

Table 7.4 gives the simulated balance for the alternating routing strategy on

an 8-node system. Batches 2 through 6 of the synthetic query log are assessed

separately and averaged. For each batch, the n ∈ {1, 10, 100, 1000} highest-

workload terms of the preceding batch are replicated. One multiply-replicated

system is also simulated; in this, eight-way replication is performed of the top

workload term, four-way replication is performed to depth 10, and duplication is

performed to depth 100. Both replicated and non-replicated terms are allocated

to nodes using the fill-smallest algorithm. The baseline to measure these results

against is the average imbalance of 1.20 achieved by the term-assigned but

unreplicated “Previous Lt” method (see Table 7.1). The results in Table 7.4

indicate that only limited benefit is gained by replication when an alternating

routing strategy is adopted. The prediction of future workload that historical

workload provides is an imperfect one, and so assignment choices based upon

it are themselves imperfect. Replicating terms reduces workload skew, which

in turn helps to flatten out the unevenness caused by the difference between

historical and current workload. However, replication by itself cannot fully

balance workload.

Instead of simply alternating between choices, a routing strategy can be

based upon keeping some measurement of the workload for each node. Then,

routing decisions can be used to try to even the workload out. A simple routing

strategy is for the receptionist to keep a count of the total workload sent so far

to each node. The count is updated for each query term before the query it is in

is dispatched. Then, if a particular query term is replicated on multiple nodes,

the node that has the lowest workload count is chosen. This approach will be

referred to as the historical routing strategy. It can be regarded as a version of

the fill-smallest algorithm, extended temporally.

Table 7.5 provides the simulated workload balances attained by the historical

routing scheme upon a pipelined system with differing degrees of replication. For

Strategy
Batch

Avg
2 3 4 5 6

Duplicate 1 1.26 1.20 1.09 1.17 1.11 1.17
Duplicate 10 1.03 1.16 1.07 1.07 1.09 1.08
Duplicate 100 1.01 1.02 1.01 1.03 1.02 1.02
Duplicate 1000 1.00 1.00 1.00 1.00 1.01 1.00
Multi-1/10/100 1.01 1.00 1.00 1.00 1.01 1.00

Table 7.5: Simulated load imbalances with different amounts of index list repli-

cation. All assignment is via the smallest-first term assignment strategy based

on the “Previous Lt” approach (see Table 7.1). Historical workload is used to

determine routing choices for queries that contain replicated terms.

79

replication and assignment purposes, workload is predicted by the “Previous

Lt” method. These figures demonstrate that the use of intelligent routing on a

replicated system is able to achieve near-perfect balance with a relatively small

degree of replication. Specifically, duplicating the 100 highest workload terms

brings the system close to perfect balance on all query batches; then, further

either duplicating the next 900 highest workload terms, or multiply-replicating

the first 10 (as described previously) achieves essentially perfect balance. By the

use of intelligent routing, the system is able at run-time to remedy imbalances

that occur due to the differences between historical and current term workload.

7.3.1 Routing schemes

Simulation has indicated that partial replication combined with intelligent rout-

ing aimed at balancing workload over time is able to achieve perfect simulated

workload balance over the length of the 10,000 query set. However, a possible

objection to the historical routing strategy is that, in determining the workload

of each node, it places the same weight upon terms from queries that occurred

thousands of queries ago as it does upon terms from queries sent out just re-

cently. In other words, while it can achieve global balance, it could be argued

that it is not sensitive enough to short-term imbalances.

One solution to the perceived insensitivity of the historical routing strategy

to short-term imbalances is to decay the workload over time by some decay factor

0 < d < 1. Before adding the workloads from terms in each query, existing node

workload counts are multiplied by 1 − d. This places more weight on recent

queries than on remote ones. This will be referred to as the decayed-historical

routing strategy.

Another way of calculating node workload is to only count terms from queries

that are currently in process—recalling that the system processes several queries

in parallel—and ignore prior workload altogether. When a query enters the

system, each node’s workload count is increased by the workload of terms in the

query that it handles, as with the historical routing strategy. Then, when the

query is finished, these workloads are subtracted from each node. This will be

referred to as the work-in-progress routing strategy.

Although the work-in-progress routing strategy only counts queries that are

currently in the system when calculating node workload, it still has an imperfect

picture of node workload at any particular time. A query moves through the

system a node at a time. If a query has already passed a node, its terms’

workloads should not be counted in the node’s current workload. In addition,

if a query has yet to reach a node, it might be desirable to treat its workload

differently from that of a query that is currently at that node. Similarly, whether

80

a term is going to be processed at the start of the query’s route or at the

end might make a difference in how the load for each node is calculated when

deciding the route for that query.

These problems with the timeliness of the information used in the work-in-

progress routing strategy could be addressed by undertaking a more complex

simulation of query traversal at the receptionist, to try to get a more accu-

rate estimation of the actual load at a given evaluator node at the time that a

particular query is estimated to arrive at that node. However, no matter how

sophisticated the simulation is, it will always remain no more than an approx-

imation. A simpler and more reliable method is not to decide upon the query

route at the receptionist at all, but allow each evaluator node to decide upon

the next hop for each query. Where the next term in a query is held by more

than one node, the evaluator node that has just finished with the query (or

the receptionist, if it is the first term in the query) asks each of the candidate

nodes to report their current workload, and forwards the query to the node that

has the lowest current workload. Here the workload is represented simply as

the total length in bytes of all query terms currently in process. This will be

referred to as the evaluator-based routing strategy.

The advantage of the evaluator-based routing strategy lies in the timeliness of

the information it receives. There can still be a lag between when the workload

data is received from candidate nodes and when the query actually arrives at

the chosen one, but the inaccuracy is much less than could be achieved by

simulation. On the other hand, there is a cost in the slight increase in latency,

bandwidth, and processing involved in nodes fetching workload information over

the network from candidate successor nodes. In addition, while each evaluator

node knows more accurately than the receptionist what its current load is, the

receptionist has a better idea what its future load is likely to be, in the form

of queries in the system which have not yet reached that node; so in switching

from receptionist-based routing to node-based routing, some information is lost.

Finally, counting current load in the way described above is arguably too coarse:

one would like to consider not how long each in-process inverted list is, but rather

how much of it is left to process, although this would involve interrupting the

accumulator-processing pipeline in each thread to negotiate mutex locks and

update global counters.

Since the alternatives to the simple historical routing scheme aim at im-

proved short-term load balance, it is not possible to assess their merits using

our simple simulated model, which only accounts for workload globally across

the query set. It is necessary therefore to turn to implementation to assess the

merits of these different routing schemes.

Table 7.6 gives the results of using the different routing schemes described

81

Routing Strategy Throughput Busy load Load balance
Historical 6.11 88.5% 1.08
Decayed-historical 6.05 87.4% 1.07
Work-in-progress 6.22 90.2% 1.06
Evaluator-routed 6.27 92.0% 1.06

Table 7.6: Throughput, busy loads, and observed load imbalances of different

routing strategies, for the second 10,000 queries of SYNQ, run on an 8-node index

of the full GOV2 collection. Throughput is measured in units of terabyte queries

per machine second. Busy load is the average proportion of time each node

spends doing anything except the idle task. Load balance is the busy load ratio

between the busiest node and the average. The routed strategies are all based

upon a term-partitioned index with the 100 highest-workload terms duplicated.

Workload is estimated from the first 10,000 queries of SYNQ. Duplicated and

unduplicated terms are assigned to nodes in a fill-smallest manner.

above with batch 2 of the synthetic query log and an index with the top 100

workload terms duplicated. Workload is estimated based on that observed in

batch 1 of the query set. The decayed-historical approach has a decay of 0.01,

giving query term workloads a half-life of 69 queries (0.9969 ≈ 0.5), which ac-

cords with the simultaneous query setting of 64, and indeed higher decays were

found to give worse performance. Term replication provides significantly im-

proved throughput for all the routing schemes considered here compared with

the throughput of 5.62 terabyte queries per machine second achieved by term

assignment (compare with Table 7.2), and the throughput differences between

the routing schemes are only slight. Interestingly, the decayed-historical ap-

proach performs worse than the historical scheme. The historical approach is

able to achieve long-term balance, which means that there is an implicit bias

towards recent history; increasing the bias through decaying history actually

harms throughput. The work-in-progress and evaluator-routed schemes do seem

to have a slight performance edge. The busy load balance figures indicate that

actual load is not balanced as evenly as the estimated model suggests it should

be; this is because actual load is determined by other factors than gross inverted

list length alone. System utilisation, as measured by average busy load, is lower

than the load imbalance by itself accounts for, suggesting that short-term im-

balances are occurring. Similarly, evaluator routing increases throughput and

system utilisation compared with historical routing by more than it improves

global load imbalance, suggesting that its superiority lies chiefly in ameliorat-

ing short-term imbalances. The question of short-term load imbalances will be

looked at in more detail later.

82

Partitioning and Total index size
replication method (GBs)
Unreplicated term-partitioned 16.06
Duplicate 100 16.60
Multi-1/10/100 16.82
Multi-4/20/100 17.14
Duplicate 1000 18.21
Document-partitioned 18.35

Table 7.7: Total size in gigabytes of all indexes in an 8-way partitioning of a

full index of GOV2 for different partitioning and replication strategies.

7.3.2 Degree of replication

The results presented in Table 7.5 show that duplicating the top 100 terms

achieves near-perfect simulated workload balance, and that either additionally

multi-replicating the top 10 terms, or duplicating the top 1,000 terms, achieves

perfect balance. Of course, duplication carries a cost, in higher disk space us-

age, dissipation of caching effectiveness, and (if dynamic list re-allocation is

being performed) in shifting inverted lists between nodes. Additionally, simu-

lated balance is not a perfect predictor of throughput results, especially where

different degrees of replication are all reporting close-to-perfect balance. This

section will examine the costs and experimental performance of different degrees

of replication.

Table 7.7 outlines the cost in additional disk space of replicating a term-

partitioned system. Costs involved in dynamically re-partitioning the index

are not considered here, as a semi-static sampling and partitioning approach

is assumed; however, were dynamic re-partitioning to be implemented, then

its costs would be related to the amount of replicated data. Note, first, that

document partitioning results in a significantly greater total index size (here,

14% larger) than term partitioning, as the vocabulary on each node is larger.

There is, therefore, a lot of leeway to replicate terms in the term-partitioned

index and still have a smaller total index size than under document partitioning.

Even replicating the 1,000 highest workload terms still takes less room than

a document-partitioned index. Table 7.5 indicated that duplication to depth

100 plus multiple replication of the top 10 terms offered equivalent balance

under simulation to duplication to depth 1,000. From Table 7.7, it can be seen

that multiple replication involves much less disk space usage than additional

duplication, which suggests that it provides a better balance-to-space trade-off.

Indeed, extending eight-way replication to depth 4 and four-way replication to

depth 20 is still more space efficient than duplication to depth 1,000.

Table 7.8 shows the normalised throughput achieved in an actual run by dif-

83

Degree of replication Normalised throughput
Duplicate 100 6.27
Multi-1/10/100 6.30
Multi-4/20/100 6.35
Duplicate 1000 6.38

Table 7.8: Normalised throughput of an evaluator-routed pipelined system with

different degrees of replication, measured in units of terabyte queries per machine

second. All runs were made with the second 10,000 batch of the SYNQ query set

upon an 8-node partitioning of TB/01.

ferent degrees of replication. Greater replication does allow for higher through-

put, although the differences are only slight. Note that whereas the simulation

in Table 7.5 showed that the multi-1/10/100 configuration is able to achieve

perfect simulated workload balance across the query set, the figures given here

indicate that a higher degree of replication continues to benefit throughput, by

giving the system more choices to route around short-term imbalances. Com-

bined with the disk space usages reported in Table 7.7, these figures suggest

that multiple replication of high-workload terms is more efficient than extend-

ing duplication to a depth of 1000.

Table 7.9 compares the evaluator-routed, partially-replicated pipelined sys-

tem against hash-assigned, unreplicated pipelining and document distribution,

across query batches 2 through 6 of SYNQ. Term workload estimation and assign-

ment for the partially-replicated system is based on the workload observed in

the first 10,000 query batch, rather than being reallocated for each batch based

upon the immediately preceding one, in order to avoid the cost of the reallo-

cation. With partial replication and intelligent routing, the pipelined system

achieves a small but consistent edge in throughput over document distribution,

Strategy
Batch

Avg
2 3 4 5 6

Hashed 4.50 4.54 5.04 4.80 4.59 4.69
Multi-4-20-100 6.35 6.44 6.65 6.89 6.91 6.65
Doc-distributed 6.21 6.30 6.64 6.60 6.49 6.45

Table 7.9: Measured query throughput rates, in units of terabyte queries per

machine second, on an 8-node partitioning of TB/01, where each batch consists

of 10,000 queries. 64 simulq were used for each run. The partially-replicated

system replicates the top 4 workload terms 8 times, the next 16 top workload

terms 4 times, and the following 80 top workload terms 2 times. Term workload

is predicted based upon the “Initial Lt” method. The last column shows the

average throughput over the five query batches.

84

1 2 3 4 5 6 7 8

Document-distributed

0.0

20.0

40.0

60.0

80.0

100.0

Lo
ad

 p
er

ce
nt

ag
e

1 2 3 4 5 6 7 8

Multi-4-20-100 pipelined

0.0

20.0

40.0

60.0

80.0

100.0

Lo
ad

 p
er

ce
nt

ag
e

Figure 7.1: Average per-processor busy load for k = 8 and TB/01, for document-

distributed processing and partially-replicated pipelined processing, for the 2nd

10,000 of SYNQ. The partially-replicated system replicates the top 4 workload

terms 8 times, the next 16 top workload terms 4 times, and the following 80

top workload terms 2 times. The dashed line in each graph is the average busy

load over the eight processors. These results can be compared with Figure 6.1

on page 69, from which the document-distributed graph is repeated.

and more than a 40% increase in throughput over an unreplicated pipelined

system with hashed assignment.

Figure 7.1 compares the actual per-processor load of the partially-replicated

evaluator-routed pipelined system against document distribution. As can be

seen, the system achieves excellent busy load balance between the nodes; the

load balance figure is 1.02. However, system utilisation at around 95% is still

below the full utilisation achieved by document distribution.

To see why the partially-replicated pipelined system is still unable to achieve

full system utilisation, Figure 7.2 examines what is happening with busy load

at a finer granularity. The busy load of node 2 is plotted against the average

busy load in the system at intervals of 100 queries. Note that system-wide busy

load is fairly stable. However, node 2’s busy load dips on a number of occasions.

Most of these coincide with a rise in load imbalance and a fall in overall system

utilisation, suggesting that a bottleneck is developing around one of the nodes

in the system at these points. Although workload across the 10,000 query batch

is fairly evenly divided, short-term imbalances persist, and even evaluator-based

routing is unable to entirely resolve them.

A higher degree of replication gives the system more choices to route around

localised imbalances. The slight improvements in throughput observed with

greater replication in Table 7.8 point in this direction. It is possible that an

85

5 10 15 20

Query burst number

0.0

1.0

2.0

Lo
ad

Load imbalance
Mean busy load
Busy load node 2

Figure 7.2: Busy load and load imbalance measure for 20 “bursts” of 100 queries.

The busy load of node 2 is plotted against the average busy load of all 8 nodes,

and against the load imbalance between busiest and average node.

improved routing scheme might be able to squeeze another small increment in

throughput out of the additional replication. However, the small differences ob-

served between existing routing schemes observed in Table 7.6 suggest that any

benefit gained from fine-tuning the routing strategy would only be marginal.

Furthermore, as the degree of replication is increased, cache effectiveness de-

creases, because information for a single term takes up space in the data caches

of more than one node in the system.

7.4 Summary

This chapter has examined the issue of load balance in a pipelined system in

detail. A simple model for approximating load balance has been introduced,

and the model has been used to calculate the expected load balance of arbitrary

allocation. Different methods of load balancing through intelligent term alloca-

tion have been examined. These have been shown to significantly improve upon

the load balance of arbitrary allocation, and as a result to increase through-

put by some 20%. However, term allocation alone still falls well short of the

load balance and throughput achieved by document distribution. In response,

the strategy of replicating high-workload terms on more than one node has been

proposed. Using partial replication and intelligent routing, the pipelined system

achieves higher throughput than document distribution, albeit only marginally.

These results have examined only the configuration of an 8-node partitioning

of the full TB/01 collection. In Chapter 8, the scalability of these results is

examined. In addition, the document-distributed and pipelined architectures

are tested under a more memory-limited environment, and the question of the

relationship between throughput and average response time is revisited.

86

Chapter 8

Scalability

Chapter 7 investigated different techniques for load-balancing the pipelined

architecture, and demonstrated that a partially-replicated pipelined system

achieves marginally higher throughput than document distribution on an 8-

node partitioning of TB/01. The current chapter investigates the scalability of

these findings. The first section extends the timings along the three directions

of scale that were discussed in Section 4.4, namely scaling by collection, cluster,

and system size. In the second section, the effect of reducing the amount of

memory available to each node in the system is examined, not only as a con-

figuration option of interest in its own right, but also because it (imperfectly)

approximates scaling the index size beyond that achievable with our sample

collection. Finally, in the third section, the relationship between query arrival

rate, average response time, and system throughput is revisited experimentally,

and the implications for response times of increasing system scale are examined.

8.1 Scaling replication

Section 4.4 discussed the importance of testing the scalability of a distributed

system in three different ways: scaling the size of the collection while holding

the size of the cluster constant; scaling the size of the cluster while holding the

size of the collection constant; and scaling the size of the collection and the size

of the cluster at the same time. All three forms of scale were explored in the

results given in Chapter 6. Chapter 7 evaluated different term allocation and

replication strategies against a single data point, that of an 8-node partitioning

of TB/01, finding that, with partial replication and intelligent routing, pipelining

provides marginally higher overall query throughput for that particular data

point. In this section, the benefits of replication are explored along the three

directions of scale. Note that while the multiple replication strategy was found

87

k
Collection

TB/04 TB/02 TB/01

k = 2 6.14 – 7.01
k = 4 – 6.23 6.71
k = 8 5.25 5.85 6.27

Table 8.1: Normalised throughput, in units of terabyte queries per machine sec-

ond, for evaluator-routed pipelined distributed retrieval, for the second 10,000

queries of the SYNQ query log. The top 100 historical workload terms are dupli-

cated, and all terms are assigned in a fill-smallest manner based on historical

workload. Up to 64 queries are simultaneously active in the system at one time.

in Chapter 7 to offer the best performance, mapping multiple replication onto

4- and 2-node systems is problematic, and for this reason, duplication to depth

100 is the mode of replication used in this chapter. Queries are routed using

the evaluator-based routing strategy.

Table 8.1 gives the results of running the standard synthetic query set on dif-

ferent collection and cluster sizes. The data points along the directions of scale

leading to the 8-node partitioning of TB/01 have been selected. The key feature

of these figures is the results achieved along the diagonal of system scale, that

is, the three data points consisting of the 2-node partitioning of TB/04, the 4-

node partitioning of TB/02, and the 8-node partitioning of TB/01. Recall from

Section 6.3.4 that the unreplicated pipelined system demonstrated very poor

scalability along this diagonal, with normalised throughput figures of 6.11, 5.62,

and 4.50 terabyte queries per machine second respectively. In contrast, with

replication and intelligent routing, the normalised throughput of the pipelined

system records a slight but perceptible increase along this diagonal—a signifi-

cant achievement. A comparison with the results for the document-distributed

architecture given in Table 6.5 on page 63 shows that the partially-replicated

pipelined system outperforms at almost all data points, albeit only by a marginal

amount for the larger collections.

8.2 Memory-limited operation

In the experiments presented so far in this thesis, processing resources have

been scaled in units of identical machines. It is also interesting to consider the

effect that scaling individual aspects of the hardware configuration has on the

document-distributed and pipelined architectures. Perhaps the most pertinent

modification to consider is a reduction in main memory. With less memory

on each machine, a smaller proportion of the index can be cached, and so the

system becomes more disk-dependent. An added experimental attraction of a

88

k
Collection

TB/04 TB/02 TB/01

k = 2 4.43 −28% – 4.66 −31%
k = 4 – 4.41 −29% 4.56 −31%
k = 8 4.17 −4% 4.84 −8% 4.32 −30%

Table 8.2: Normalised throughput for document-distributed retrieval, for the

second 10,000 queries of the SYNQ query log, with available main memory on

each processor node reduced from 1024 MB to 512 MB. Throughput is measured in

units of terabyte queries per machine second. The top 100 historical workload

terms are duplicated for the pipelined run. Up to 64 queries are simultaneously

active in the system at one time. The percentage figures give the change in

throughput compared to the full-memory results provided in Table 6.5 on page

63.

more memory-limited environment is that it helps to compensate for the modest

size of our test collection. Although it is the largest of the TREC collections

available to date, in terms of web scale GOV2 is by no means large. As reported

in Table 6.1, a monolithic index of the full collection is 16.6 GB in size. Spread

across 8 servers each with 1 GB of main memory, it is obvious that a significant

proportion of the index can be cached in memory. Limiting memory provides

insight into the performance characteristics that could be expected from a larger

experimental collection.

A reduction in available memory is most easily achieved by running in paral-

lel a low-priority process that allocates and occupies exactly the amount of mem-

ory that is to be made unavailable. To force each page into physical memory, the

process traverses repeatedly through its allocation, marking each page by writ-

ing a single byte to it. The page marking needs to be done frequently enough to

prevent the occupied memory being swapped out, but not so frequently that a

significant proportion of processor time is required. In the following runs, 512 MB

of the 1 GB of main memory on each node is occupied by a background process,

which performs a marking-traversal of this memory once every 500 milliseconds.

When run on an otherwise idle system, the memory-occupying process took up

less than 1.5% of processor time.

Table 8.2 reports the throughput achieved by the document-distributed ar-

chitecture in the memory-limited environment, along with the change in through-

put compared to the full-memory configuration. With the reduced amount of

memory available for caching, the throughput of the document-distributed ar-

chitecture falls by around 30% for configurations on or above the diagonal of

system scale from 2-node TB/04 to 8-node TB/01, while 8-node TB/02 falls by

8% and 8-node TB/04 only marginally.

89

k
Collection

TB/04 TB/02 TB/01

k = 2 5.84 −5% – 5.45 −22%
k = 4 – 6.25 +0% 6.39 −5%
k = 8 5.10 −3% 5.73 −2% 6.13 −2%

Table 8.3: Normalised throughput for partially-replicated, evaluator-routed

pipelined distributed retrieval, for the second 10,000 queries of the SYNQ query

log, with available main memory on each processor node reduced from 1024 MB to

512 MB. Throughput is measured in units of terabyte queries per machine second.

The top 100 historical workload terms are duplicated for the pipelined run. Up

to 64 queries are simultaneously active in the system at one time. The percent-

age figures give the change in throughput compared to the full-memory results

provided in Table 8.1.

Table 8.3 gives the throughput figures for the partially-replicated pipelined

architecture under the same memory-limited conditions. In contrast to docu-

ment distribution, pipelining suffers only a slight fall in throughput for all in-

dexes except 2-node TB/01. The results along the diagonal from 2-node TB/04

to 8-node TB/01 are particularly interesting. The throughput of 2-node TB/04

falls by 5% with the reduction in main memory. However, ss the system scales

along the diagonal, data contiguity increases, with the results that the 4-node

TB/02 system maintains the same throughput as in the full-memory environ-

ment despite the halving of main memory—a remarkable result. At the same

time, though, there is a slight fall in the throughput of the 8-node TB/01 con-

figuration, suggesting that the decrease in main memory complicates the task

of load balancing.

The disk access characteristics underlying the throughput figures from Ta-

Document-distributed Dupl-100 pipelined

k
Collection

TB/04 TB/02 TB/01

k = 2 32.7 – 37.2
k = 4 – 33.2 36.6
k = 8 2.0 9.3 35.9

k
Collection

TB/04 TB/02 TB/01

k = 2 5.6 – 28.2
k = 4 – 1.7 4.1
k = 8 1.2 1.6 2.7

Table 8.4: IO wait loads as percentages for document-distributed and partially-

replicated, evaluator-routed pipelined distributed retrieval, for the second 10,000

queries of the SYNQ query log, with available main memory reduced from 1GB

to 512MB, as described in the text. The top 100 historical workload terms are

duplicated for the pipelined run. Up to 64 queries are simultaneously active in

the system at one time.

90

bles 8.2 and 8.3 are shown in Table 8.4, which states, for each configuration,

the average percentage of time the evaluator nodes spent waiting for I/O oper-

ations (almost exclusively disk reads) to complete. The pipelined architecture’s

superior disk access characteristics stand out clearly. In the reduced mem-

ory environment, both architectures are forced to read more data off disk for

processing. Disk access becomes a bottleneck for the document-distributed sys-

tem on the 2-node TB/04 to 8-node TB/01 diagonal, with the architecture’s

fragmented inverted lists leading to many short reads, and much time lost in

seeking between disk locations. In contrast, the partially-replicated pipelined

architecture, with its greater contiguity of data on disk and longer continuous

reads and fewer seeks, has no trouble in keeping the processor supplied with

data, and only begins to encounter serious delays for the 2-node TB/02 configu-

ration. In short, in this memory-limited environment, the document-distributed

architecture becomes disk-bound with a per-server index a quarter of the size

of that required to make the pipelined system similarly disk-bound. Looking in

more detail, note that the I/O wait load for the pipelined system drops from

5.6% for 2-node TB/04 to 1.7% for 4-node TB/02, demonstrating the on-disk

data contiguity benefits that pipelining gains from increased system scale.

These results indicate, most obviously, that the search engine deployer is

able to save money on memory by using a suitably balanced pipelined architec-

ture, which is not an inconsiderable point in itself. More importantly, though,

the results suggest that, were a larger collection to be hosted on each machine,

or were a less compact index representation employed (for instance, one that

includes word offsets), the reduction in the proportion of the index cached would

be more deleterious to the document-distributed architecture than to pipelin-

ing. These results are of particular interest to truly web-scale indexes, which

are several orders of magnitude larger than the ones used in the current exper-

iments. The precise performance trade-offs will depend of course on hardware

configuration, data size, and software implementation. Nevertheless, the supe-

rior performance of the pipelined architecture in a predominantly disk-bound

environment is clear.

8.3 Throughput, response time, and system load

The experiments in this thesis so far have been focused upon maximising query

throughput, and have used simulq (the number of queries simultaneously active

in the system) as a parameter tuneable to achieve maximal throughput. The

question of the system’s average response time (the time from the moment a

query is received to the moment it is answered) is also of real-world interest.

This section examines the relationship between throughput and response time

91

40 60 80 100 120

Queries per second

0.0

0.5

1.0

1.5

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Document
Pipeline (dupl-100)

Figure 8.1: Average query response time for the document-distributed and

pipelined systems. The pipelined system duplicates the 100 historically highest

workload terms, and performs evaluator-based routing. Both runs were made on

an 8-node cluster hosting an index of TB/01. The queries were the 2nd 10,000

of the SYNQ query set, with following queries added to the queue until all 10,000

in the set had completed. Queries were released into the system queue at regular

intervals.

under varying degrees of system load.

The most natural experimental methodology for exploring questions of query

response time and workload is to vary, not the number of queries simultaneously

active, but the number of queries submitted to the system per second, with

queries being released at regular intervals. Varying the interval between query

releases approximates how workload is conceived of in real-world settings, as the

number of queries that arrive to be processed in a given unit of time. Of course,

in a real system, query arrivals would not be evenly spaced, with something like

a Poisson distribution being more likely, but this simplification is adequate for

the current purposes.

Figure 8.1 displays the average response times achieved by the document-

distributed and partially-replicated pipelined architectures for different rates of

query arrivals per second, for an 8-node partitioning of TB/01. At low work-

loads, the pipelined system takes almost four times as long to answer each query

as the document-distributed system does. The difference is due to the natural

92

40 60 80 100 120

Queries per second

0.0

0.5

1.0

1.5

A
ve

ra
ge

 r
es

po
ns

e
tim

e
Document
Pipeline (dupl-100)

Figure 8.2: Average query response time for document-distributed and pipelined

systems on a four-node index of TB/02. Other settings are as for Figure 8.1.

processing parallelism of the document distribution architecture, compared to

the inherent serialism of pipelining. As the number of queries per second in-

creases, so too does the average response time. Queries start to arrive before

the previous ones have been finished; the system has to share resources between

them, and so each one takes longer to process. The increase in average response

time is similar for both architectures until quite heavy workloads are reached.

At 110 queries per second, the document-distributed system is still processing

each query in around two-thirds of the time of the pipelined system. However,

by 120 queries per second, the document-distributed system is clearly at the

very limits of its capacity, and the average query response time has shot up

sharply; here, it is the pipelined system that is taking two-thirds of the time

to answer each query. Pipelining’s lower average response times at high system

loads when compared to document distribution is a direct result of its higher

query throughput capacity. Nevertheless, for most workloads, document distri-

bution offers faster response times.

Another question of interest is what effect scaling the system has upon av-

erage response times at low to moderate workloads. Figure 8.2 is enlightening

in this regard. Here, four nodes are being used to run an index of TB/02;

that is, one step has been taken backwards along the diagonal of system scale.

93

Behaviour similar to Figure 8.1 is observed; document distribution has faster

response times at low loads, with the curves crossing as document distribution

hits its system capacity. There is, however, an instructive difference between the

two graphs at low loads. Document distribution, with its parallelised processing,

displays similar average response times for the two system sizes. In contrast,

pipelining’s inherently serialised processing causes its average response time to

increase with system scale, being for the 8-node system roughly double what

it is for the 4-node one. This is a major limitation of pipelining: average re-

sponse time under light load increases roughly in proportion with system scale,

whereas under document distribution it is more or less constant. In other words,

increasing cluster size under pipelining will increase maximal throughput, but it

cannot help resolve potential issues with response time under low to moderate

loads.

8.4 Summary

This chapter has examined the scalability of the pipelined system when en-

hanced with partial replication and intelligent query routing. An unreplicated

pipelined system with arbitrary term allocation suffers increasingly poor load

balancing as the degree of partitioning increases, as was observed in Chap-

ter 6. With partial replication and intelligent routing, however, the pipelined

architecture is able to overcome this problem and record a slight increase in

throughput as the system scales in size. In addition, if the memory available for

disk caching is reduced, pipelining’s superiority in throughput over document

distribution becomes more marked, not only meaning that the deployer can

save on memory costs, but also suggesting that pipelining will respond better to

per-node index sizes larger than those used in this thesis. On the other hand,

document distribution provides faster average response times than pipelining

at low to moderate load levels, and maintains these fast response times as the

system scales, whereas pipelining’s low-load response times increase with sys-

tem scale. Chapter 9, which concludes the thesis, will provide some guidance

to the implementor of a real-world search engine on how to weigh the relative

advantages of the two architectures.

94

Chapter 9

Conclusions and future

directions

This chapter summarises the findings of the thesis, provides guidance for the

system implementor on which distributed architecture to adopt, and presents

some possible directions for future research in the area.

9.1 Conclusions

The focus of this thesis has been upon evaluating the throughput potential of

the pipelined system. At the outset of the research described here, pipelining

was a promising but untested new architecture for distributed full-text query

evaluation, one that offered the prospect of combining the superior on-disk data

contiguity of term partitioning with the shared processing model of document

distribution. Contemporary popular web-scale search engines have immense

processing loads placed upon them, and even a small improvement in efficiency

can mean significant savings in hardware and running costs.

The experiments described in Chapter 6 indicated, however, that the pipe-

lined architecture faced a serious problem with load balancing, one that over-

whelmed the benefits to be derived from its superior disk access characteristics.

In contrast, document distribution demonstrated excellent natural load balanc-

ing. While pipelining was a significant improvement upon the traditional term-

distributed architecture, its load balancing problems clearly had to be resolved

before it could be a serious challenger to document distribution.

A number of approaches to load-balancing a pipelined system were described

in Chapter 7. Since the root of the problem is the skewed workload distribu-

tion amongst query terms, the obvious solution is to explicitly allocate terms

95

to nodes so as to balance out the workload skew. Unfortunately, balancing

workload through term allocation is not as straightforward as it might appear.

The term frequency distribution in the query stream is not the same as in the

document collection, and so a sample of the query stream must be used to

arrive at reasonable estimates of future term workloads. The composition of

the query stream varies from one sample to the next, however, so even with

sampling-based term allocation strategies, long-term imbalances remain.

A more successful load-balancing strategy than explicit term allocation is

partial term replication and intelligent query routing. Replication and rout-

ing are able to achieve perfect simulated long-term balance, and demonstrate

good load balancing in experimental runs on an implemented system, too. In

addition, term replication allows the system to route around short-term bottle-

necks that occur due to the natural variability in term occurrences in the query

stream. The results given in Chapter 7 indicate that a partially-replicated,

intelligently-routed pipelined system is able to match and even marginally out-

perform document distribution, for the experimental configuration employed.

The additional experiments described in Chapter 8 not only demonstrate the

scalability of the partially-replicated pipelined system, but also indicate that

it significantly outperforms document distribution in a memory-limited envi-

ronment, which in turn suggests that it would likewise outperform were the

per-node index size to be larger than that used in this thesis’s experimental

configuration. At the same time, it must be recognised that document distri-

bution offers faster average response times at low to medium loads, and holds

these response times more or less constant as the system scales, in contrast to

the proportionate increase in response time that occur in the pipelined system.

The reliability of these findings rests upon the thoroughness of the experi-

mental methodology employed, which was described in Chapter 4. A poorly-

designed query set, for instance, could underemphasise the skewed nature of the

term workload distribution, and therefore obscure the load balancing problems

that this causes the pipelined system. Similarly, only by building scalability into

the experimental design does the excellent natural scalability of the document-

distributed architecture become apparent.

In light of the findings of this thesis, and given the assumption of document-

ordered inverted lists and term-at-a-time processing, which is the distributed

architecture of choice for the system implementor? The answer depends on the

performance requirements and available resources of a particular deployment. If

the slower average query response time is acceptable, then money can be saved

by implementing a partially-replicated pipelined system on a cluster of machines

with reduced memory, and running the cluster at or near its throughput capac-

ity. If fast per-query response time is essential, however, the clear choice is to

96

implement a document-distributed system, with generous amounts of memory

on each node to maximise index caching and thus minimise the impact of the

architecture’s larger per-node vocabulary and fragmentation of inverted list in-

formation. In addition, the cluster should have enough nodes to ensure that

the system is running well below full utilisation. A hybrid architecture would

also be possible, in which the collection was document-partitioned to reduce

average response time, and then each of these document-wise partitions was

sub-partitioned by terms and deployed upon a pipelined cluster to squeeze the

maximum performance out of the hardware budget.

9.2 Future directions

There are a number of directions that future research in this area could take.

As noted in Section 7.3, the query routing algorithms examined for the partially

replicated pipelined system are somewhat crude. An improved algorithm would

build upon a more precise measurement of current workload at each node, and

also use information about queries currently in process in the system which

are yet to reach the node. Such an algorithm would improve short-term load

balancing, thus squeezing the last few percentage points of utilisation out of

the system. It would also be desirable, when the routing choice is between

two fairly evenly loaded nodes, to choose to send the query to the node which

had most recently handled the term, in order to improve cache effectiveness.

Additionally, a more sophisticated analysis of query term co-occurrence in the

historical query stream would enable fine tuning of the term assignment and

replication strategies, although whether the goal should be to maximise the

extent to which co-occurring query terms are held on the one node, to reduce

the number of query bundle hops, or minimise co-occurrence, to reduce load

imbalance, remains to be clarified.

The relatively poor query response time of the pipelined system under light

to moderate workloads has been noted as a significant limitation of the architec-

ture. Pipelining’s response time could be improved by preloading all inverted

lists for a query as soon as the query reaches the receptionist, rather than load-

ing inverted lists only when the query bundle arrives at a node. Preloading

inverted lists would enable disk parallelism. A degree of processing parallelism

could be achieved by forwarding accumulators from one machine to the next in

blocks as they are created, rather than waiting for processing at the originating

node to be completed. Nevertheless, these methods, while decreasing query re-

sponse time, cannot ultimately solve its non-scalability in the pipelined system,

since the time to load and process the longest inverted list sets a lower bound

on overall processing time.

97

The experiments in this thesis have all worked with document-ordered lists.

Processing ranked queries with document-ordered lists requires that the full in-

verted list be loaded from disk. With web-scale collections, these inverted lists

become quite large for frequent terms, and so the roughly fixed seek time is

amortised across a long read time. The primary advantage of term partitioning,

and hence of pipelining, is in the reduction in the number of seek operations; the

long reads of loading full inverted lists dilute this advantage. There are alterna-

tive inverted index organisations, such as inverted lists containing and ordered

by pre-computed impacts [Anh and Moffat, 2006a], in which only the front por-

tion of each inverted list, which contains high-weight documents, needs to be

read. The shorter reads of such environments would accentuate pipelining’s

advantage in reducing the number of seek operations.

There are also some interesting possibilities for increasing the throughput of

document distribution. As described in this thesis, each node in a document-

distributed system operates autonomously, with the possible exception that

global rather than local term statistics are used. However, it should be pos-

sible to make use of the results of running a query on one or a subset of the

nodes of a document-distributed cluster to inform the query evaluation carried

out on the remaining nodes. For instance, the document scores derived on one

node could be used to set a more strict accumulator threshold for the remaining

nodes. If such an evaluation strategy required other nodes to delay processing

until one or a subset of nodes had completed either a partial or a full evaluation

of the query, then query response time would suffer, which might not be desir-

able or tolerable. However, random variability in processing scheduling due to

disk location, caching, and network latency mean that it will naturally happen

that some nodes will start processing a particular query before others, and it

may be possible to opportunistically use the natural staggering in processing to

inform some nodes of the partial results achieved on others.

9.3 Summary

The pipelined architecture is an interesting and novel approach to the efficient

implementation of a distributed information retrieval engine. This thesis has

undertaken a meticulous examination of this new architecture, and has sought

to advance not only our understanding of its strengths and its limitations, but

also the methodology by which experiments on the efficiency of distributed

architectures are performed. The final assessment of the pipelined architecture

is mixed, but there are clearly domains in which it has significant potential. The

research presented in this thesis lays a firm foundation from which this potential

might be realised.

98

Bibliography

V. N. Anh and A. Moffat. Impact transformation: Effective and efficient web

retrieval. In K. Järvelin, M. Beaulieu, R. Baeza-Yates, and S. H. Myaeng,

editors, Proc. 25th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 3–10, Tampere, Finland,

Aug. 2002.

V. N. Anh and A. Moffat. Inverted index compression using word-aligned binary

codes. Kluwer International Journal of Information Retrieval, 8(1):151–166,

Jan. 2005.

V. N. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts.

In S. Dumais, E. Efthimiadis, D. Hawking, and K. Järvelin, editors, Proc. 29th

Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, Seattle, WA, Aug. 2006a.

V. N. Anh and A. Moffat. Improved word-aligned binary compression for text

indexing. IEEE Transactions on Knowledge and Data Engineering, 18(6):

857–861, June 2006b.

V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective

early termination. In W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel,

editors, Proc. 24th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 35–42, New Orleans, LA,

Sept. 2001.

C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Ziviani. Distributed query

processing using partitioned inverted files. In G. Navarro, editor, Proc. 8th In-

ternational Symposium on String Processing and Information Retrieval, pages

10–20, Laguna de San Rafael, Chile, Nov. 2001.

R. Baeza-Yates. Web usage mining in search engines. In A. Scime, editor, Web

Mining: Applications and Techniques. Idea Group Publishing, 2005.

99

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM

Press, New York, New York, 1999.

P. Bailey, N. Craswell, and D. Hawking. Engineering a multi-purpose test collec-

tion for Web retrieval experiments. Information Processing & Management,

39(6):853–871, 2003.

L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The Google

cluster architecture. IEEE Micro, 23(2):22–28, 2003.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search

engine. In P. Enslow and A. Ellis, editors, Proc. 7th International Conference

on the World Wide Web, pages 107–117, Brisbane, Australia, 1998. Elsevier

Science Publishers B. V.

F. Cacheda, V. Plachouras, and I. Ounis. Performance analysis of distributed

architectures to index one terabyte of text. In S. McDonald and J. Tait,

editors, Proc. 26th European Conference on IR Research, volume 2997 of

Lecture Notes in Computer Science, pages 394–408, Sunderland, UK, Apr.

2004. Springer.

B. Cahoon and K. S. McKinley. Performance evaluation of a distributed archi-

tecture for information retrieval. In H.-P. Frei, D. Harman, P. Schäuble, and

R. Wilkinson, editors, Proc. 19th Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, pages 110–118,

Zurich, Switzerland, Aug. 1996. ACM Press, New York.

B. Cahoon, K. S. McKinley, and Z. Lu. Evaluating the performance of dis-

tributed architectures for information retrieval using a variety of workloads.

ACM Transactions on Information Systems, 18(1):1–43, Jan. 2000.

J. Callan. Distributed information retrieval. In Advances in Information Re-

trieval: Recent Research from the Center for Intelligent Information Retrieval,

pages 127–150. Kluwer Academic Publishers, 2000.

J. Callan, F. Crestani, and M. Sanderson. SIGIR 2003 workshop on distributed

information retrieval. ACM SIGIR Forum, 37(2), 2003.

D. Cutting and J. Pedersen. Optimization for dynamic inverted index mainte-

nance. In Proc. 13th Annual International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, pages 405–411, New York,

NY, USA, 1990. ACM Press.

D. D’Souza, M. Fuller, J. Thom, P. Vines, J. Zobel, O. de Kretser, R. Wilkinson,

and M. Wu. Melbourne TREC-9 experiments. In E. M. Voorhees and D. K.

100

Harman, editors, Proc. TREC-9, pages 437–451, Nov. 2000. NIST Special

Publication 500-249.

E. Fox, D. Harman, and R. Baeza-Yates. Inverted files. In W. Frakes and

R. Baeza-Yates, editors, Information Retrieval: Data Structures and Algo-

rithms, chapter 3. Prentice-Hall, 1992.

A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages.

In WWW ’05: Special interest tracks and posters of the 14th international

conference on World Wide Web, pages 902–903, New York, NY, USA, 2005.

ACM Press.

D. Harman. Overview of the first TREC conference. In Proc. 16th Annual

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, pages 36–47, New York, NY, USA, 1993. ACM Press.

D. Hawking. Efficiency/effectiveness trade-offs in query processing. ACM SIGIR

Forum, 32(2):16–22, 1998.

B. P. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information

retrieval: A study of user queries on the web. ACM SIGIR Forum, 32(1):

5–17, Spring 1998.

B.-S. Jeong and E. Omiecinski. Inverted file partitioning schemes in multiple

disk systems. IEEE Transactions on Parallel and Distributed Systems, 6(2):

142–153, 1995.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately inter-

preting clickthrough data as implicit feedback. In G. Marchionini, A. Moffat,

J. Tait, R. Baeza-Yates, and N. Ziviani, editors, Proc. 28th Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, Salvador, Brazil, Aug. 2005.

M. Kaszkiel and J. Zobel. Term-ordered query evaluation versus document-

ordered query evaluation for large document databases. In W. B. Croft,

A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors, Proc.

21st Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 343–344, Melbourne, Australia, Aug.

1998.

J. Kekäläinen and K. Järvelin. Using graded relevance assessments in IR evalu-

ation. Jour. of the American Society for Information Science and Technology,

53(13):1120–1129, Sept. 2002.

101

M. G. Kendall. A new measure of rank correlation. Biometrika, 30:81–93, June

1938.

N. Lester. Efficient index maintenance for text databases. PhD thesis, RMIT

University, Australia, 2006.

N. Lester, A. Moffat, W. Webber, and J. Zobel. Space-limited ranked query

evaluation using adaptive pruning. In A. H. Ngu, M. Kitsuregawa, E. J.

Neuhold, J.-Y. Chung, and Q. Z. Sheng, editors, Proc. 6th Int. Conf. on Web

Informations Systems, pages 470–477, New York, Nov. 2005. LNCS 3806,

Springer.

M. Levene and A. Poulovassilis. Web dynamics. Software Focus, 2(2):60–67,

2001.

Z. Lu and K. S. McKinley. Partial collection replication versus caching for in-

formation retrieval systems. In E. Yannakoudis, N. Belkin, M. Leong, and

P. Ingwersen, editors, Proc. 23rd Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, pages 248–255,

Athens, Greece, Aug. 2000.

Z. Lu and K. S. McKinley. Partial replica selection based on relevance for

information retrieval. In M. Hearst, F. Gey, and R. Tong, editors, Proc. 22nd

Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 97–104, San Francisco, CA, Aug. 1999.

A. MacFarlane, J. A. McCann, and S. E. Robertson. Parallel search using

partitioned inverted files. In P. de la Fuente, editor, Proc. 7th International

Symposium on String Processing and Information Retrieval, pages 209–220,

A Coruña, Spain, Sept. 2000.

A. Moffat and J. Zobel. What does it mean to “measure performance”? In

X. Zhou, S. Su, M. P. Papazoglou, M. E. Owlowska, and K. Jeffrey, editors,

Proc. Fifth International Conference on Web Information Systems, pages 1–

12, Brisbane, Australia, Nov. 2004. LNCS 3306, Springer.

A. Moffat and J. Zobel. Rank-biased precision for measurement of retrieval

effectiveness. 2006. Submitted for review.

A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM

Transactions on Information Systems, 14(4):349–379, Oct. 1996.

A. Moffat, J. Zobel, and R. Sacks-Davis. Memory efficient ranking. Inf. Process.

Manage., 30(6):733–744, 1994.

102

A. Moffat, W. Webber, and J. Zobel. Load balancing for term-distributed par-

allel retrieval. In S. Dumais, E. Efthimiadis, D. Hawking, and K. Järvelin,

editors, Proc. 29th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 348–355, Seattle, WA, Aug.

2006a.

A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A pipelined architec-

ture for distributed text query evaluation. Kluwer International Journal of

Information Retrieval, Oct. 2006b. Published online.

M. J. Moroney. Facts from Figures. Penguin Books, New York, 1951.

S. Orlando, R. Perego, and F. Silvestri. Design of a parallel and distributed web

search engine. In Proc. 2001 Parallel Computing Conference, pages 197–204.

Imperial College Press, Sept. 2001.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with

frequency-sorted indexes. Journal of the American Society for Information

Science, 47(10):749–764, Oct. 1996.

E. Rasmusen. Introduction: parallel processing and information retrieval. In-

formation Processing & Management, 27(4):255–263, 1991.

B. Ribeiro-Neto, E. S. de Moura, M. S. Neubert, and N. Ziviani. Efficient

distributed algorithms to build inverted files. In M. Hearst, F. Gey, and

R. Tong, editors, Proc. 22nd Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 105–112, San

Francisco, CA, Aug. 1999.

B. A. Ribeiro-Neto and R. R. Barbosa. Query performance for tightly cou-

pled distributed digital libraries. In Proc. 3rd ACM Conference on Digital

Libraries, pages 182–190, Pittsburgh, PA, June 1998. ACM Press, New York.

S. E. Robertson, S. Walker, M. M. Hancock-Beaulieu, and M. Gatford. Okapi

at TREC-3. In D. K. Harman, editor, Proc. TREC-3, pages 109–126, Nov.

1994. NIST Special Publication 500-225.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, 1983.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic

indexing. ACM Transactions on Information Systems, 18(11):613–620, 1975.

M. Sanderson and J. Zobel. Information retrieval system evaluation: effort,

sensitivity, and reliability. In G. Marchionini, A. Moffat, J. Tait, R. Baeza-

Yates, and N. Ziviani, editors, Proc. 28th Annual International ACM SIGIR

103

Conference on Research and Development in Information Retrieval, pages

162–169, Salvador, Brazil, Aug. 2005.

F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of inverted

indexes for fast query evaluation. In K. Järvelin, M. Beaulieu, R. Baeza-

Yates, and S. H. Myaeng, editors, Proc. 25th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pages 222–229, Tampere, Finland, Aug. 2002.

L. Si and J. Callan. Modeling search engine effectiveness for federated search. In

G. Marchionini, A. Moffat, J. Tait, R. Baeza-Yates, and N. Ziviani, editors,

Proc. 28th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 83–90, Salvador, Brazil, Aug.

2005.

C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a very large

web search engine query log. ACM SIGIR Forum, 33(1):6–12, 1999.

I. Soboroff. Does WT10g look like the web? In K. Järvelin, M. Beaulieu,

R. Baeza-Yates, and S. H. Myaeng, editors, Proc. 25th Annual International

ACM SIGIR Conference on Research and Development in Information Re-

trieval, pages 423–424, Tampere, Finland, Aug. 2002.

A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic. Searching the web: The

public and their queries. Journal of the American Society for Information

Science, 52(3):226–234, 2001.

A. Tomasic and H. Garćıa-Molina. Performance of inverted indices in shared-

nothing distributed text document information retrieval systems. In M. J.

Carey and P. Valduriez, editors, Proc. 2nd International Conference On Par-

allel and Distributed Information Systems, pages 8–17, Los Alamitos, CA,

Jan. 1993. IEEE Computer Society Press.

A. Tomasic and H. Garćıa-Molina. Performance issues in distributed shared-

nothing information-retrieval systems. Information Processing & Manage-

ment, 32(6):647–665, 1996.

H. Turtle and J. Flood. Query evaluation: strategies and optimizations. Infor-

mation Processing & Management, 31(6):831–850, 1995.

E. Voorhees and D. Harman, editors. TREC: Experiment and Evaluation in

Information Retrieval. The MIT Press, 2005.

104

E. M. Voorhees. Evaluation by highly relevant documents. In W. B. Croft,

D. J. Harper, D. H. Kraft, and J. Zobel, editors, Proc. 24th Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 74–82, New Orleans, LA, Sept. 2001.

W. Webber and A. Moffat. In search of reliable retrieval experiments. In J. Kay,

A. Turpin, and R. Wilkinson, editors, Proc. 10th Australasian Document

Computing Symposium, pages 26–33, Sydney, Dec. 2005.

H. Williams and J. Zobel. Searchable words on the web. International Journal

of Digital Libraries, 5(2):99–105, 2005.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kaufmann, San Francisco, second

edition, 1999.

W. Xi, O. Sornil, M. Luo, and E. A. Fox. Hybrid partition inverted files:

Experimental validation. In M. Agosti and C. Thanos, editors, Proc. European

Conference on Digital Libraries, pages 422–431, Rome, Sept. 2002. Springer.

LNCS volume 2458.

G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, and W. Fan. Op-

timizing web search using web click-through data. In Proc. 13th Conf. on

Information and Knowledge Management, pages 118–126, New York, NY,

USA, 2004. ACM Press.

C. Zhai and J. Lafferty. A study of smoothing methods for language models

applied to information retrieval. ACM Transactions on Information Systems,

22(2):179–214, Apr. 2004.

J. Zobel. How reliable are the results of large-scale information retrieval ex-

periments? In W. B. Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson,

and J. Zobel, editors, Proc. 21st Annual International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, pages 307–314,

Melbourne, Australia, Aug. 1998.

J. Zobel and A. Moffat. Exploring the similarity space. ACM SIGIR Forum, 32

(1):18–34, 1998.

J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature

files for text indexing. ACM Trans. Database Syst., 23(4):453–490, 1998.

105

